2023年山西省中考数学试题

发布 2022-06-13 06:53:28 阅读 1165

一、选择题(共10小题,每小题3分,共30分)

1.(3分)(2014山西)计算﹣2+3的结果是( )

2.(3分)(2014山西)如图,直线ab、cd被直线ef所截,ab∥cd,∠1=110°,则∠2等于( )

3.(3分)(2014山西)下列运算正确的是( )

4.(3分)(2014山西)如图是我国古代数学家赵爽在为《周髀算经》作注解时给出的“弦图”,它解决的数学问题是( )

5.(3分)(2014山西)如图是由三个小正方体叠成的一个几何体,它的左视图是( )

6.(3分)(2014山西)我们学习了一次函数、二次函数和反比例函数,回顾学习过程,都是按照列表、描点、连线得到函数的图象,然后根据函数的图象研究函数的性质,这种研究方法主要体现的数学思想是( )

7.(3分)(2014山西)在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是( )

8.(3分)(2014山西)如图,⊙o是△abc的外接圆,连接oa、ob,∠oba=50°,则∠c的度数为( )

9.(3分)(2014山西)pm2.5是指大气中直径小于或等于2.5μm(1μm=0.

000001m)的颗粒物,也称为可入肺颗粒物,它们含有大量的有毒、有害物质,对人体健康和大气环境质量有很大危害.2.5μm用科学记数法可表示为( )

10.(3分)(2014山西)如图,点e在正方形abcd的对角线ac上,且ec=2ae,直角三角形feg的两直角边ef、eg分别交bc、dc于点m、n.若正方形abcd的变长为a,则重叠部分四边形emcn的面积为( )

二、填空题(共6小题,每小题3分,共18分)

11.(3分)(2014山西)计算:3a2b32a2b

12.(3分)(2014山西)化简+的结果是。

13.(3分)(2014山西)如图,已知一次函数y=kx﹣4的图象与x轴、y轴分别交于a、b两点,与反比例函数y=在第一象限内的图象交于点c,且a为bc的中点,则k14.(3分)(2014山西)甲、乙、丙三位同学打乒乓球,想通过“手心手背”游戏来决定其中哪两个人先打,规则如下:三个人同时各用一只手随机出示手心或手背,若只有两个人手势相同(都是手心或都是手背),则这两人先打,若三人手势相同,则重新决定.那么通过一次“手心手背”游戏能决定甲打乒乓球的概率是。

15.(3分)(2014山西)一走廊拐角的横截面积如图,已知ab⊥bc,ab∥de,bc∥fg,且两组平行墙壁间的走廊宽度都是1m,的圆心为o,半径为1m,且∠eof=90°,de、fg分别与⊙o相切于e、f两点.若水平放置的木棒mn的两个端点m、n分别在ab和bc上,且mn与⊙o相切于点p,p是的中点,则木棒mn的长度为m.

16.(3分)(2014山西)如图,在△abc中,∠bac=30°,ab=ac,ad是bc边上的中线,∠ace=∠bac,ce交ab于点e,交ad于点f.若bc=2,则ef的长为。

三、解答题(共8小题,共72分)

17.(10分)(2014山西)(1)计算:(﹣2)2sin60°﹣(1×;

2)分解因式:(x﹣1)(x﹣3)+1.

18.(6分)(2014山西)解不等式组并求出它的正整数解:.

19.(6分)(2014山西)阅读以下材料,并按要求完成相应的任务.

如果只研究一般的筝形(不包括菱形),请根据以上材料完成下列任务:

1)请说出筝形和菱形的相同点和不同点各两条;

2)请仿照图1的画法,在图2所示的8×8网格中重新设计一个由四个全等的筝形和四个全等的菱形组成的新图案,具体要求如下:

顶点都在格点上;

所涉及的图案既是轴对称图形又是中心对称图形;

将新图案中的四个筝形都图上阴影(建议用一系列平行斜线表示阴影).

20.(10分)(2014山西)某公司招聘人才,对应聘者分别进行阅读能力、思维能力和表达能力三项测试,其中甲、乙两人的成绩如下表(单位:分):

1)若根据三项测试的平均成绩在甲、乙两人中录用一人,那么谁将能被录用?

2)根据实际需要,公司将阅读、思维和表达能力三项测试得分按3:5:2的比确定每人的最后成绩,若按此成绩在甲、乙两人中录用一人,谁将被录用?

3)公司按照(2)中的成绩计算方法,将每位应聘者的最后成绩绘制成如图所示的频数分布直方图(每组分数段均包含左端数值,不包含右端数值,如最右边一组分数x为:85≤x<90),并决定由高分到低分录用8名员工,甲、乙两人能否被录用?请说明理由,并求出本次招聘人才的录用率.

21.(7分)(2014山西)如图,点a、b、c表示某旅游景区三个缆车站的位置,线段ab、bc表示连接缆车站的钢缆,已知a、b、c三点在同一铅直平面内,它们的海拔高度aa′,bb′,cc′分别为110米、310米、710米,钢缆ab的坡度i1=1:2,钢缆bc的坡度i2=1:1,景区因改造缆车线路,需要从a到c直线架设一条钢缆,那么钢缆ac的长度是多少米?

(注:坡度:是指坡面的铅直高度与水平宽度的比)

22.(9分)(2014山西)某新建火车站站前广场需要绿化的面积为46000米2,施工队在绿化了22000米2后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程.

1)该项绿化工程原计划每天完成多少米2?

2)该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56米2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?

23.(11分)(2014山西)课程学习:正方形折纸中的数学.

动手操作:如图1,四边形abcd是一张正方形纸片,先将正方形abcd对折,使bc与ad重合,折痕为ef,把这个正方形展平,然后沿直线cg折叠,使b点落在ef上,对应点为b′.

数学思考:(1)求∠cb′f的度数;

2)如图2,在图1的基础上,连接ab′,试判断∠b′ae与∠gcb′的大小关系,并说明理由;

解决问题:3)如图3,按以下步骤进行操作:

第一步:先将正方形abcd对折,使bc与ad重合,折痕为ef,把这个正方形展平,然后继续对折,使ab与dc重合,折痕为mn,再把这个正方形展平,设ef和mn相交于点o;

第二步:沿直线cg折叠,使b点落在ef上,对应点为b′,再沿直线ah折叠,使d点落在ef上,对应点为d′;

第三步:设cg、ah分别与mn相交于点p、q,连接b′p、pd′、d′q、qb′,试判断四边形b′pd′q的形状,并证明你的结论.

24.(13分)(2014山西)综合与**:如图,在平面直角坐标系xoy中,四边形oabc是平行四边形,a、c两点的坐标分别为(4,0),(2,3),抛物线w经过o、a、c三点,d是抛物线w的顶点.

1)求抛物线w的解析式及顶点d的坐标;

2)将抛物线w和oabc一起先向右平移4个单位后,再向下平移m(0<m<3)个单位,得到抛物线w′和o′a′b′c′,在向下平移的过程中,设o′a′b′c′与oabc的重叠部分的面积为s,试**:当m为何值时s有最大值,并求出s的最大值;

3)在(2)的条件下,当s取最大值时,设此时抛物线w′的顶点为f,若点m是x轴上的动点,点n时抛物线w′上的动点,试判断是否存在这样的点m和点n,使得以d、f、m、n为顶点的四边形是平行四边形?若存在,请直接写出点m的坐标;若不存在,请说明理由.

2023年山西省中考数学试题

第卷选择题 共30分 满分 120分时间 120分钟。一。选择题 本大题共10个小题,每小题3分,共30分 1.3的绝对值是 a.3 b.3 c.d.2.下列运算正确的是 a.b.c.d.3.某正方体的每个面上都有一个汉字,如图是它的一中展开图,那么在原正方体中,与 点 字所在面相对的面上的汉字是 ...

2023年山西省中考数学试题

第 卷选择题 共20分 一 选择题 本大题10个小题,每题2分,共20分 在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑 1 3的绝对值是 b a 3b 3cd 2 如图,直线a b 直线c分别与a b相交于点a b。已知 1 35,则 2的度数为 c a 165b ...

2023年山西省中考数学试题

山西省2003年数学中考题。一 填空题 每小题2分,共24分 2 函数中的自变量x的取值范围是。3 一粒纽扣式电池能能够污染60升水,太原市每年报废的电池有近10 000 000粒,如果废旧电池不 一年报废的电池所污染的水约升 用科学计数法表示 4 联欢会上,小红按照4个红气球 3个黄气球 2个绿气...