中考数学压轴题型研究 动态问题

发布 2021-04-30 13:48:28 阅读 5950

中考数学压轴题型研究——动态问题。

动态几何问题是近几年北京市中考数学和各区模拟考试中压轴题的一大热点和难点,考察的知识点非常多,几乎涉及到代数和几何的各个知识点,如坐标系中的计算,一次函数和二次函数的图象和性质,全等三角形,相似三角形,平移、翻折、旋转三种几何变换等等。对学生对知识的熟练运用以及弄清本质下进行迁移和转化的能力要求非常高,同时,对函数与方程、分类讨论和数形结合三大数学思想的考查也是必考的内容。因为这种问题既注重对常见知识点的考查又能体现学生思维和能力上的区别,所以一般都在压轴题的位置出现。

很多同学也对这类问题比较头疼,感觉很难把握要领,真正取得突破。

新年华数学教研组的各位老师经过长期的深入研究,发现了其内在的规律,最终我们给出这类问题的一套解决方案,从而帮助很多初三同学彻底克服了这类难题。

这套方案的内容可以这么表述:一个方针,两种思想,三个关键点。

一个方针就是“以静制动”,不管题目中是点在动还是线在动甚至是一个几何图形在动,每个问题的解决都是某种静态的情况,只要把这种情况分析清楚,做出相应图形,利用自己掌握的代数和几何的知识进行求解就行了。

两种思想是分类讨论思想和函数与方程的思想,先说分类讨论,在动态问题中一般有两种分类的类型,一种是存在性问题,此时要根据几何图形本身的性质和特征进行分类,比如等腰三角形就按哪个是顶角分成三类,平行四边形按谁和谁是对边进行分类;一种是函数关系类问题,一般按照运动的不同阶段进行分类,常见的是求某个图形的面积和变量之间的函数关系。再说函数与方程的思想,动态题的本质就是含字母的计算题,只要找到跟要求目标相关的等量关系然后写出方程(组)进行求解即可。

三个关键点是:审题(看清问题中运动的起始位置,何时结束,是在直线上还是线段上运动等)、作图(每一种情况都要分别作图)、标图(把题目中的基本数量和各种位置关系标清楚,尤其是特殊的角度和特殊的数量和位置关系)

另外,作为综合题,一般会分成好几问,把握好特殊和一般情况之间的联系和区别也是解题中特别要注意的地方。一般第一问会比较简单,但是对后面的问题会有一定的提示和铺垫作用,要注意分析。

下面结合具体问题进行分析。

例1】(2009北京中考24题)在abcd中,过点c作ce⊥cd交ad于点e,将线段ec绕点e逆时针旋转90°得到线段ef(如图1).

1)在图1中画图**:

当为射线cd上任意一点(不与c点重合)时【审题时要注意这句话中的射线和不与c点重合】,连结,将线段绕点e逆时针旋转90°得到线段。判断直线与直线cd的位置关系并加以证明;

当点为线段dc的延长线上任意一点时,连结,将线段绕点e逆时针旋转90°得到线段。判断直线与直线cd的位置关系,画出图形并直接写出你的结论。

2)若ad=6,, ae =1,在①的条件下,设=x, =y,求y与x之间的函数关系式,并写出自变量x的取值范围。

分析】这是09北京中考倒数第二题,综合考查了几何中的三角形全等,平行四边形的性质,旋转变换,三角函数,以及面积问题。既要求具备对证明题的严密的推理能力,也要求对于较复杂计算题的处理能力。

参***和点评】:(1)①直线与直线cd的位置关系为互相垂直 .

证明:如图1【注意单独作图】,设直线与直线cd的交点为h.

线段、分别绕点e逆时针旋转90°依次得到线段ef 、,

△≌这里实质是旋转变换的一种基本模型】

⊥cd. 按题目要求所画图形见图1,直线与直线cd的位置关系为互相垂直 .

2)∵ 四边形abcd是平行四边形,.

ad=6,ae =1,,,

可得 ce=4 .

由(1)可得四边形fech为正方形.

ch=ce=4.

这里的函数关系跟动点的位置有关,所以要分不同阶段进行分类讨论】

1 如图2【仍然需要单独作图,用以静制动的想法处理】,当点**段ch的延长线上时,.

(x>4).

2 如图3【仍然需要单独作图,用以静制动的想法处理】,当点**段ch上(不与c、h两点重合)时,.

(0<x<4).

当点与点重合时,即时,△不存在.

综上所述,y与x之间的函数关系式及自变量x的取值范围是(x>4)

或(0<x<4).

例2】(2010北京中考24题)在平面直角坐标系中,抛物线与轴的交点分别为原点和点,点在这条抛物线上.

1) 求点的坐标;

(2) 点**段上,从点出发向点运动,过点作轴的垂线,与直线交于点,延长到点,使得,以为斜边,在右侧作等腰直角三角形(当点运动时,点、点也随之运动).

当等腰直角三角形的顶点落在此抛物线上时,求的长;

若点从点出发向点作匀速运动,速度为每秒个单位,同时线段上另一个点从点出发向点作匀速运动,速度为每秒个单位(当点到达点时停止运动,点也同时停止运动).过点作轴的垂线,与直线交于点,延长到点,使得,以为斜边,在的左侧作等腰直角三角形(当点运动时,点、点也随之运动).若点运动到秒时,两个等腰直角三角形分别有一条边恰好落在同一条直线上,求此刻的值.

分析】这是10北京中考倒数第二题,在平面直角坐标系的背景下考察动态问题,综合考查了一次函数和二次函数的图像和性质,等腰直角三角形,平移变换,含参数问题的计算。同时对于分类讨论的思想的考查也是本题的重点。

参***和点评】:(1)∵ 抛物线经过原点,.

解得,.由题意知,【注意审题,不要忘了】

抛物线的解析式为.

点在抛物线上,.

点的坐标为.

2)① 设直线的解析式为.

求得直线的解析式为.

点是抛物线与x轴的一个交点,可求得点的坐标为.

设点的坐标为,则点的坐标为.

根据题意作等腰直角三角形,如图1.【该作图时一定要作图】

可求得点的坐标为.

由点在抛物线上,得.

即.解得(舍去).

注意点的坐标和函数解析式以及线段长度之间的互相转化】

依题意作等腰直角三角形.

设直线的解析式为.

由点,点,求得直线的解析式为. 当点运动到秒时,两个等腰直角三角形分别有一条边恰好落在同一条直线上,有以下三种情况:【根据几何关系进行分类讨论,因为题中对于哪条边共线没有明确指出,所以要分三种情况进行讨论】

第一种情况:与在同一条直线上,如图2所示.【单独作图,以静制动】

可证 △为等腰直角三角形.

此时的长可依次表示为。个单位.

第二种情况:与在同一条直线上,如图3所示.

可证 △为等腰直角三角形.

此时的长可依次表示为个单位.

点在直线上,.

第三种情况:点重合时, 在同一条直线上,如图4所示.

此时的长可依次表示为个单位.

综上,符合题意的t值分别为.

小试身手】(09济南中考)如图,在梯形中,动点从点出发沿线段以每秒2个单位长度的速度向终点运动;动点同时从点出发沿线段以每秒1个单位长度的速度向终点运动.设运动的时间为秒.

1)求的长.

2)当时,求的值.

3)试**:为何值时,为等腰三角形.

参***】:(1)如图①,过、分别作于,于,则四边形是矩形。

在中,在中,由勾股定理得,2)如图②,过作交于点,则四边形是平行四边形。

由题意知,当、运动到秒时,又。

即。解得,3)分三种情况讨论:

当时,如图③,即。

当时,如图④,过作于。

解法一:由等腰三角形三线合一性质得。

在中,又在中,解得。

解法二:即。

当时,如图⑤,过作于点。

解法一:(方法同②中解法一)

解得。解法二:

即 ∴综上所述,当、或时,为等腰三角形

中考数学压轴题型研究

中考数学压轴题型研究 一 动点几何问题。许术利。近几年中考数学中运动几何问题倍受青睐,它不仅综合考查初中数学骨干知识,如三角形全等与相似 图形的平移与旋转 函数 一次函数 二次函数与反比例函数 与方程等,更重要的是综合考查初中基本数学思想与方法。此类题型也往往起到了考试的选拔作用,使学生之间的数学考...

高考数学压轴题新题型研究

为了帮 生们了解自主招生信息,查字典数学网分享了高考数学压轴题新题型,供您参考!所谓新题型,就是一些高考数学压轴题的创新题型,其没有常规思路,完全靠学生自己分析题意,寻找解题方法,意义在于培养学生的创新能力,以及发现问题,寻找方法的能,创新题没有常规解法,但是,有常规解题思路。并且是只有一种思路。下...

中考物理压轴题型

1.如图所示是家用饮水机的工作原理电路,其中s是温度控制开关,当水温升高到一定温度时,饮水机从加热状态自动切换到保温状态,已知电阻r0 55 r 2365 1 当开关s处于 2 挡时,通过电阻r和r0的电流强度各为多大?2 当开关s分别处于 1 挡和 2 档时,饮水机的总功率各是多少?3 请判断当开...