人教版数学《简单的线性规划问题 第一课时》教学设计

发布 2020-09-15 01:31:28 阅读 1385

《简单的线性规划问题》教学设计

人教a版高中课标教材数学必修5第三章第3.3节)

授课教师:刘勇天津市滨海新区汉沽一中

指导教师:沈婕天津市中小学教育教学研究室。

张志坤天津市汉沽教育中心。

王瑞雪天津市滨海新区汉沽一中。

2024年10月。

简单的线性规划问题》(第一课时)教学设计。

天津市滨海新区汉沽第一中学刘勇。

一、内容与内容解析。

本节课是《普通高中课程标准实验教科书数学》人教a版必修5第三章《不等式》中3.3.2《简单的线性规划问题》的第一课时。 主要内容是线性规划的相关概念和简单的线性规划问题的解法.

线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法,广泛地应用于军事作战、经济分析、经营管理和工程技术等方面.简单的线性规划指的是目标函数含两个自变量的线性规划,其最优解可以用数形结合方法求出。简单的线性规划关心的是两类问题:一是在人力、物力、资金等资源一定的条件下,如何使用它们来完成最多的任务;二是给定一项任务,如何合理规划,能以最少的人力、物力、资金等资源来完成。

教科书利用生产安排的具体实例,介绍了线性规划问题的**法,引出线性规划等概念,最后举例说明了简单的二元线性规划在饮食营养搭配中的应用。

本节内容蕴含了丰富的数学思想方法,突出体现了优化思想、数形结合思想和化归思想。

本节教学重点:线性规划问题的**法;寻求有实际背景的线性规划问题的最优解。

二、目标和目标解析。

一)教学目标。

1.了解约束条件、目标函数、可行解、可行域、最优解等基本概念。

2. 会用**法求线性目标函数的最大值、最小值。

3.培养学生观察、联想、作图和理解实际问题的能力,渗透化归、数形结合的数学思想。

4.结合教学内容培养学生学习数学的兴趣和“用数学”的意识。

二)教学目标解析。

1. 了解线性规划模型的特征:一组决策变量表示一个方案;约束条件是一次不等式组;目标函数是线性的,求目标函数的最大值或最小值.熟悉线性约束条件(不等式组)的几何表征是平面区域(可行域).体会可行域与可行解、可行域与最优解、可行解与最优解的关系.

2.使学生学会从实际优化问题中抽象、识别出线性规划模型.能理解目标函数的几何表征(一组平行直线).能依据目标函数的几何意义,运用数形结合方法求出最优解和线性目标函数的最大(小)值,其基本步骤为画、移、求、答。

3.教学中不但要教教材,还要教教材中的蕴含的方法。在**如何求目标函数的最值时,通过以下几方面让学生领悟数形结合思想、化归思想在数学中的应用。

(1)不定方程的解与平面内点的坐标的结合,进而产生了直线的方程。(2)线性目标函数解析式与直线的斜截式方程的结合。(3)线性目标函数的函数值与直线的纵截距的结合。

(4)二元一次不等式(组)的解集与可行域的结合。(5)线性目标函数**性约束条件下的最值与直线过可行域内的点时纵截距的最值的结合。这样就能使学生对数形结合思想的理解更透彻,为以后解析几何的学习和研究奠定基础, 使学生从更深层次理解“以形助数”的作用以及具体方法。

4. **性规划问题的**过程中,使学生经历观察、分析、操作、归纳、概括的认知过程,培养解决运用已有知识解决新问题的能力。

三、教学问题诊断分析。

本节课学生在学习过程中可能遇到以下疑虑和困难:

1)将实际问题抽象成线性规划问题;

2)用**法解线性规划问题中,为什么要将求目标函数最值问题转化为经过可行域的直线在y轴上的截距的最值问题?如何想到要这样转化?

3)数形结合思想的深入理解。

为此教学中教师要千方百计地为学生创设**情境,并作合理适度的引导,通过学生的积极主动思考,运用由特殊到一般的研究方法,借助于讨论、动手画图等形式进行深入**。教师的引导是至关重要的,要做到既能给学生启示又能发展学生思维,让学生通过自己的**获取直接经验。

教学难点:用**法求最优解的探索过程;数形结合思想的理解。

教学关键:指导学生紧紧抓住化归、数形结合的数学思想方法找到目标函数与直线方程的关系。

四、教法分析。

新课程倡导学生积极主动、勇于探索的学习方式,课堂中应注重创设师生互动、生生互动的和谐氛围,通过学生动手实践、动脑思考等方法**数学知识获取直接经验,进而培养学生的思维能力和应用意识等。

本节课以学生为中心,以问题为载体,采用启发、引导、**相结合的教学方法。

1)设置“问题”情境,激发学生解决问题的欲望;

2)提供“观察、探索、交流”的机会,引导学生独立思考,有效地调动学生思维,使学生在开放的活动中获取直接经验。

3)在教学中体现“重过程、重情感、重生活”的理念;

4)让学生经历“学数学、做数学、用数学”的过程。

五、教学支持条件分析。

根据本节课教材内容的特点,为了更直观、形象地突出重点,突破难点,调动学生的学习兴趣,借助信息技术工具,以“几何画板”软件为平台,将目标函数与直线方程进行转化,通过直线的平行移动的演示,观察纵坐标的变化,求出目标函数的最值。让学生学会用“数形结合”思想方法建立起代数问题和几何问题间的密切联系.

六、教学过程。

一) 创设情境,激发**欲望。

组织学生做选盒子的游戏活动。

在下图的方格中,每列(x)与每行(y)的交汇处都放有一个盒子,每次你只能选其中的一个盒子,每个盒子对应一个分值,即为你的得分,而且该分值与盒子所在的行数和列数有关,且每次的关系式在变化,你会选哪个盒子?

例如: 第一次:分值= (即: 列数+行数)

第二次:分值= (即: 行数-列数×2)

师生活动:教师组织学生做选盒子得分的游戏,学生用“运算—比较”的方法容易解决老师提出的问题。之后,给出图3,让学生在图中找目标函数的最大值,学生沿用上面计算的方法显然很复杂,于是学生的思维产生“结点”.

引出课题,提出何为线性(即为一次的)?怎么规划(即求函数的最值)?是本节课的研究重点。

设计意图】数学是现实世界的反映。创设学生感兴趣的问题情境,从兴趣解决→稍有困难→有较大困难,使学生产生急于解决问题的内驱力,同时培养学生从实际问题抽象出数学模型的能力。

二)独思共议,引导**方法。

引导学生由特殊到一般分析目标函数的函数值。

问题1:当时,求x,y的值。

师生活动:学生通过计算找到三个点的坐标,并观察出三点共线,求出直线方程,教师引导学生观察所对应的直线的纵截距。

设计意图】通过特殊问题,帮助学生理解问题的实质:求x,y的值即求不定方程的解。数形结合,将求变量x,y转化成求点的坐标。

观察时三个盒子所在点的位置关系及直线的方程,使学生体会b值就是直线的纵截距。

问题2.在图3中,求的最大值。

师生活动:学生在教师的引导下分组讨论,求b的最大值。

通过之前教师的引导及学生对上一节“二元一次不等式表示的平面区域”的学习,对学生的讨论结果有两种预案:

预案1:学生通过由特殊到一般的分析,将目标函数转化成,x,y在取得每个可行解时,b的取值就是直线过这个点时的纵截距,而所有这些直线都是平行的,因此只需平移直线看纵截距的最大值即可。

预案2:根据上一节“二元一次不等式(组)所表示的平面区域”的知识,学生认为b取最大值时x、y的取值一定在直线的右上方的位置,为此就依次在这些位置上画平行于的直线,只要上面有点就不停的画,直至最后一点。

师生活动:学生展示讨论结果,教师借助几何画板作演示、分析,渗透转化和数形结合的数学思想。并对学生的结论作出总结,先作直线,再作平移,观察直线的纵截距。

设计意图】由特殊到一般,利用数形结合,寻求解题思路。

三)变式思考,深化**思路。

1.将目标函数变成, 求b的最大值。

师生活动:通过学生将化成的形式,做直线并进行平移,观察纵截距的最大值的回答过程,教师强调解题步骤:画、作、移、求。

设计意图】规范方法并检验学生对方法的理解程度,使学生感受由直线斜率的变化引起使取最大值的过程中点的变化。

2.将目标函数变成,求b的最大值。

师生活动:教师引导学生比较此题和上题的区别,学生发现平移直线时若按上题的方法找纵截距的最大值便会出现问题,通过思考、讨论,找到本题需取截距最小的原因。

设计意图】通过目标函数的不同变式,让学生熟悉求最值的方法,尤其是直线中纵截距的符号为负的情况.借助“几何画板”集中呈现目标函数的图形变化,提高课堂效率,建立精准的数形联系.

四)规范格式,应用**成果。

1.例1:(习题3.3a组第3题)电视台应某企业之约**两套连续剧,其中,连续剧甲每次**时间为80min,其中广告时间为1min,收视观众为60万;连续剧乙每次**时间为40min,广告时间为1min,收视观众为20万。

已知此企业与电视台达成协议,要求电视台每周至少**6min广告,而电视台每周只能为该企业提供不多于320min的节目时间。如果你是电视台的制片人,电视台每周应播映两套连续剧各多少次,才能获得最高的收视率?

解:设甲**x次,乙**y次,收视观众z万人次。

则。用如下步骤求z的最大值:

1)画出可行域;

2)作出直线:(3)平移至点a处纵截距最大,即z最大;

4)解方程组: 得,因此。

答:甲**2次,乙**4次,收视观众最多为200万人次。

师生活动:教师引领学生理解题意,让学生继续领会用**形式描述数据的直观性。让学生独立建立线性规划的数学模型,并正确设出变量,找好目标函数及约束条件后自行完成此题。

通过学生板演,教师规范写法,然后借助解题的过程介绍线性目标函数、线性约束条件、可行解、可行域、最优解及线性规划的数学概念。

设计意图】利用学生感兴趣的例子激发学习动机,通过一道完整的简单线性规划问题,让学生掌握解决简单线性规划问题的基本步骤,培养学生的数学建模意识。同时进一步加深对**法的认识。

2.反思例1解题过程,深入体会数形结合思想。

简单的线性规划 2 作业

2013级高一数学作业 2014年4月3日 简单的线性规划 2 一 填空题 1.若则目标函数的取值范围是。2.不等式组表示的平面区域的形状是 3.在坐标平面内,不等式组所表示的平面区域的面积为。4 点在以为顶点的三角形的内部 不包括边界 运动,则的取值范围是。5.若满足约束条件目标函数仅在点处取得最...

课时分层作业21简单的线性规划问题

课时分层作业 二十一 简单的线性规划问题。建议用时 60分钟 基础达标练 一 选择题。1 若点 x,y 位于曲线y x 与y 2所围成的封闭区域,则2x y的最小值为 a 6 b 2 c 0 d 2 a 画出可行域,如图所示,解得a 2,2 设z 2x y,把z 2x y变形为y 2x z,则直线经...

课时分层作业21简单的线性规划问题

课时分层作业 二十一 简单的线性规划问题。建议用时 40分钟 学业达标练 一 选择题。1 若点 x,y 位于曲线y x 与y 2所围成的封闭区域,则2x y的最小值为 a 6b 2 c 0 d 2 a 画出可行域,如图所示,解得a 2,2 设z 2x y,把z 2x y变形为y 2x z,则直线经过...