六年级数学抽屉原理教学设计

发布 2020-03-29 12:51:28 阅读 9834

】教学计划是课程设置的整体规划,根据一定的教育目的和培养目标制定的教学和教育工作的指导文件。查字典数学网为大家提供六年级数学:抽屉原理教学设计,欢迎阅读!

六年级数学:抽屉原理教学设计【教学内容】

义务教育课程标准实验教科书数学》六年级下册第68页。【教学目标】

1.经历抽屉原理的**过程,初步了解抽屉原理,会用抽屉原理解决简单的实际问题。

2.通过操作发展学生的类推能力,形成比较抽象的数学思维。

3.通过抽屉原理的灵活应用感受数学的魅力。【教学重点】

经历抽屉原理的**过程,初步了解抽屉原理。【教学难点】

理解抽屉原理,并对一些简单实际问题加以模型化。【教具、学具准备】

每组都有相应数量的盒子、铅笔、书。【教学过程】一、课前游戏引入。

第1页。师:同学们在我们上课之前,先做个小游戏:

老师这里准备了4把椅子,请5个同学上来,谁愿来?(学生上来后)师:听清要求,老师说开始以后,请你们5个都坐在椅子上,每个人必须都坐下,好吗?

(好)。这时教师面向全体,背对那5个人。师:

开始。师:都坐下了吗?

生:坐下了。

师:我没有看到他们坐的情况,但是我敢肯定地说:不管怎么坐,总有一把椅子上至少坐两个同学我说得对吗?生:对!

师:老师为什么能做出准确的判断呢?道理是什么?这其中蕴含着一个有趣的数学原理,这节课我们就一起来研究这个原理。下面我们开始上课,可以吗?

点评】教师从学生熟悉的抢椅子游戏开始,让学生初步体验不管怎么坐,总有一把椅子上至少坐两个同学,使学生明确这是现实生活中存在着的一种现象,激发了学生的学习兴趣,为后面开展教与学的活动做了铺垫。二、通过操作,**新知(一)教学例1

1.出示题目:有3枝铅笔,2个盒子,把3枝铅笔放进2个盒子里,怎么放?有几种不同的放法?

第2页。师:请同学们实际放放看,谁来展示一下你摆放的情况?

(指名摆)根据学生摆的情况,师板书各种情况(3,0) (2,1)【点评】此处设计教师注意了从最简单的数据开始摆放,有利于学生观察、理解,有利于调动所有的学生积极参与进来。师:5个人坐在4把椅子上,不管怎么坐,总有一把椅子上至少坐两个同学。

3支笔放进2个盒子里呢?生:不管怎么放,总有一个盒子里至少有2枝笔?

是:是这样吗?谁还有这样的发现,再说一说。

师:那么,把4枝铅笔放进3个盒子里,怎么放?有几种不同的放法?请同学们实际放放看。(师巡视,了解情况,个别指导)

师:谁来展示一下你摆放的情况?(指名摆)根据学生摆的情况,师板书各种情况。

(4,0,0)(3,1,0)(2,2,0)(2,1,1),师:还有不同的放法吗?生:

没有了。师:你能发现什么?

生:不管怎么放,总有一个盒子里至少有2枝铅笔。师:总有是什么意思?

第3页。生:一定有。

师:至少有2枝什么意思?

生:不少于两只,可能是2枝,也可能是多于2枝?师:

就是不能少于2枝。(通过操作让学生充分体验感受)师:把3枝笔放进2个盒子里,和把4枝笔饭放进3个盒子里,不管怎么放,总有一个盒子里至少有2枝铅笔。

这是我们通过实际操作现了这个结论。那么,我们能不能找到一种更为直接的方法,只摆一种情况,也能得到这个结论呢?学生思考组内交流汇报。

师:哪一组同学能把你们的想法汇报一下?

组1生:我们发现如果每个盒子里放1枝铅笔,最多放3枝,剩下的1枝不管放进哪一个盒子里,总有一个盒子里至少有2枝铅笔。

师:你能结合操作给大家演示一遍吗?(学生操作演示)师:同学们自己说说看,同位之间边演示边说一说好吗?师:这种分法,实际就是先怎么分的?生众:平均分。

师:为什么要先平均分?(组织学生讨论)

生1:要想发现存在着总有一个盒子里一定至少有2枝,先平均分,余下1枝,不管放在那个盒子里,一定会出现总有一个盒子里一定至少有2枝。

生2:这样分,只分一次就能确定总有一个盒子至少有几枝。

第4页。笔了?

师:同意吗?那么把5枝笔放进4个盒子里呢?(可以结合操作,说一说)

师:哪位同学能把你的想法汇报一下,生:(一边演示一边说)5枝铅笔放在4个盒子里,不管怎么放,总有一个盒子里至少有2枝铅笔。师:把6枝笔放进5个盒子里呢?还用摆吗?

生:6枝铅笔放在5个盒子里,不管怎么放,总有一个盒子里至少有2枝铅笔。

师:把7枝笔放进6个盒子里呢?把8枝笔放进7个盒子里呢?把9枝笔放进8个盒子里呢?你发现什么?

生1:笔的枝数比盒子数多1,不管怎么放,总有一个盒子里至少有2枝铅笔。

师:你的发现和他一样吗?(一样)你们太了不起了!同桌互相说一遍。

点评】教师关注了抽屉原理的最基本原理,物体个数必须要多于抽屉个数,化繁为简,此处确实有必要提领出来进行教学。在学生自主探索的基础上,教师注意引导学生得出一般性的结论:只要放的铅笔数盒数多1,总有一个盒里至少放进2支。

通过教师组织开展的扎实有效的教学活动,学生。

第5页。学的有兴趣,发展了学生的类推能力,形成比较抽象的数学思维。2.解决问题。

1)课件出示:5只鸽子飞回4个鸽笼,至少有2只鸽子要飞进同一个鸽笼里,为什么?(学生活动独立思考自主**)(2)交流、说理活动。师:谁能说说为什么?

生1:如果一个鸽笼里飞进一只鸽子,最多飞进4只鸽子,还剩一只,要飞进其中的一个鸽笼里。不管怎么飞,至少有2只鸽子要飞进同一个鸽笼里。生2:我们也是这样想的。

生3:把5只鸽子平均分到4个笼子里,每个笼子1只,剩下1只,放到任何一个笼子里,就能保证至少有2只鸽子飞进同一个笼里。

生4:可以用54=11,余下的1只,飞到任何一个鸽笼里都能保证至少有2只鸽子飞进一个个笼里,所以,至少有2只鸽子飞进同一个笼里的结论是正确的。

师:许多同学没有再摆学具,证明这个结论是正确的,用的什么方法?

生:用平均分的方法,就能说明存在总有一个鸽笼至少有2只鸽子飞进一个个笼里。

第6页。师:同意吗?(生:同意)老师把这位同学说的算式写下来,(板书:54=11)

师:同位之间再说一说,对这种方法的理解。

师:现在谁能说说你对总有一个鸽笼里至少飞进2只鸽子的理解。

生:我们发现这是必然存在的一个现象,不管鸽子怎样飞回鸽笼,一定会有一个鸽笼里至少有2只鸽子。师:同学们都有这个发现吗?生众:发现了。

师:同学们非常了不起,善于运用观察、分析、思考、推理、证明的方法研究问题,得出结论。同学们的思维也在不知不觉中提升了许多,那么让我们再来看这样一组问题。(二)教学例2

1.出示题目:把5本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?

把7本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?

把9本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?

留给学生思考的空间,师巡视了解各种情况)2.学生汇报。

生1:把5本书放进2个抽屉里,如果每个抽屉里先放2本,第7页。

还剩1本,这本书不管放到哪个抽屉里,总有一个抽屉里至少有3本书。

板书:5本2个2本余1本(总有一个抽屉里至有3本书)7本2个3本余1本(总有一个抽屉里至有4本书)9本2个4本余1本(总有一个抽屉里至有5本书)师:2本、3本、4本是怎么得到的?

生答完成除法算式。52=2本1本(商加1)72=3本1本(商加1)92=4本1本(商加1)师:观察板书你能发现什么?

生1:总有一个抽屉里的至少有2本只要用商+ 1就可以得到。

师:如果把5本书放进3个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?

生:总有一个抽屉里的至少有3本只要用53=1本2本,用商+ 2就可以了。

生:不同意!先把5本书平均分放到3个抽屉里,每个抽屉里先放1本,还剩2本,这2本书再平均分,不管分到哪两个抽屉里,总有一个抽屉里至少有2本书,不是3本书。

师:到底是商+1还是商+余数呢?谁的结论对呢?

在小组里进行研究、讨论。交流、说理活动:

第8页。生1:我们组通过讨论并且实际分了分,结论是总有一个抽屉里至少有2本书,不是3本书。

生2:把5本书平均分放到3个抽屉里,每个抽屉里先放1本,余下的2本可以在2个抽屉里再各放1本,结论是总有一个抽屉里至少有2本书。

生3∶我们组的结论是5本书平均分放到3个抽屉里,总有一个抽屉里至少有2本书用商加1就可以了,不是商加2。师:现在大家都明白了吧?

那么怎样才能够确定总有一个抽屉里至少有几个物体呢?

生4:如果书的本数是奇数,用书的本数除以抽屉数,再用所得的商加1,就会发现总有一个抽屉里至少有商加1本书了。

师:同学们同意吧?

师:同学们的这一发现,称为抽屉原理,抽屉原理又称鸽笼原理,最先是由19世纪的德国数学家狄利克雷提出来的,所以又称狄里克雷原理,也称为鸽巢原理。这一原理在解决实际问题中有着广泛的应用。

抽屉原理的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结果。下面我们应用这一原理解决问题。3.

解决问题。71页第3题。(独立完成,交流反馈)小结:

经过刚才的探索研究,我们经历了一个很不简单的思维过程,我们获得了解决这类问题的好办法,下面让我们轻。

第9页。松一下做个小游戏。

点评】在这一环节的教学中教师抓住了假设法最核心的思路就是用有余数除法形式表示出来,使学生学生借助直观,很好的理解了如果把书尽量多地平均分给各个抽屉里,看每个抽屉里能分到多少本书,余下的书不管放到哪个抽屉里,总有一个抽屉里比平均分得的书的本数多1本。特别是对某个抽屉至少有书的本数是除法算式中的商加1,而不是商加余数,教师适时挑出针对性问题进行交流、讨论,使学生从本质上理解了抽屉原理。三、应用原理解决问题。

师:我这里有一副扑克牌,去掉了两张王牌,还剩52张,我请五位同学每人任意抽1张,听清要求,不要让别人看到你抽的是什么牌。请大家猜测一下,同种花色的至少有几张?为什么?

生:2张/因为54=11

师:先验证一下你们的猜测:举牌验证。

师:如有3张同花色的,符合你们的猜测吗?师:

如果9个人每一个人抽一张呢?生:至少有3张牌是同一花色,因为94=21四、全课小结。

点评】当学生利用有余数除法解决了具体问题后,教师引导学生总结归纳这一类抽屉问题的一般规律,使学生进一步。

第10页。理解掌握了抽屉原理。

六年级数学抽屉原理教学设计

教学计划是课程设置的整体规划,根据一定的教育目的和培养目标制定的教学和教育工作的指导文件。查字典数学网为大家提供六年级数学 抽屉原理教学设计,欢迎阅读!六年级数学 抽屉原理教学设计 教学内容 义务教育课程标准实验教科书数学 六年级下册第68页。教学目标 1.经历抽屉原理的 过程,初步了解抽屉原理,会...

人教版六年级数学下册《抽屉原理》教学设计

抽屉原理 教学设计。教学内容 人教版六年级下第五单元例1和例2.教材分析 抽屉原理又称鸽巢问题,是组合数学中最简单的数学原理之一,从这个原理出发,可得出许多有趣的原理。这部分教材,通过几个直观的例子,借助实际操作,使学生感受到这一原理。学生在理解的基础上,能将一些简单的问题模型化,促进学生归纳概括,...

六年级数学 抽屉原理

六年级数学 抽屉原理。1 把不少于 n 1 个物口分成n类,则总有某一类中至少有2个物品。2 一般地,把不少于 m n 1 个物品分成n类,则总有某一类中到少有 m 1 个物品。3.把a个物体放进n n a 个抽屉,如果a n b c c 0 那么一定有一个抽屉中至少放进 b 1 个物体。4.如果有...