2023年初二数学下册期末模拟试题2 新北师大版

发布 2023-06-04 23:19:28 阅读 9819

2023年新北师大版初二下期末数学(二)

a卷(共100分)

第i卷(选择题,共30分)

一、选择题(本大题共10个小题,每小题3分,共30分。每小题均有四个选项。

其中只有一项符合题目要求,答案涂在答题卡上)

一、选择题(每小题3分,共30分)

1、不等式2x-3≥0的解集是()

2、如果关于x的不等式(a+1)x>a+1的解集为》-1

3、下列多项式能因式分解的是()

4、如果把分式中的a、b都扩大3倍,那么分式的值一定()

a.是原来的3倍b.是原来的5倍c.是原来的1/3d.不变。

5、化简:的结果是().

6、“退耕还林还草”是我国实施的一项工程,某地规划退耕面积共69000公顷,退耕还林与退耕还草的面积比为5:3,设退耕还林的面积为x公顷,下列方程不正确的是。

7.下列说法正确的是()

a.平移不改变图形的形状和大小,而旋转则改变图形的形状和大小。

b.平移和旋转的共同点是改变图形的位置。

c.图形可以向某方向平移一定距离,也可以向某方向旋转一定距离。

d.由平移得到的图形也一定可由旋转得到。

8、如图,在四边形abcd中,∠dac=∠acb,要使四边形abcd成为平行四边形,则应增加的条件不能是()

a.ad=bcb.oa=oc

c.ab=cdd.∠abc+∠bcd=180°

9.已知(x+3)2+│3x+y+m│=0中,y为负数,则m的取值范围是()

中,∠abc与∠acb的平分线相交于i,且∠bic=130°,则∠a的度数是()

a.40°b.50°c.65°d.80°

二.填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)

11、若a<b<0,则1,1-a,1-b这三个数按由小到大的顺序用“<”连接起来:.

12、分解因式:2x2-12x+18=.

13、计算的结果是。

14、如图,a、b两点被池塘隔开,在ab外选一点c,连结ac和bc,并分别找出它们的中点m、n.

若测得mn=15m,则a、b两点的距离为。

三.解答题(本大题共6个小题,共54分)

15、(6分)(1)解不等式组,并把解集在数轴上表示出来。

2)因式分解:

3)解方程:

16、(6分)先化简,再求值:–,其中x=.

18.(本小题满分8分)

如图,在平面直角坐标系中,△abc的三个顶点都在格点上,点a的坐标为(2,4),请解答下列问题:

1)画出△abc关于x轴对称的△a1b1c1,并写出点a1的坐标.

2)画出△a1b1c1绕原点o旋转180°后得到的△a2b2c2,并写出点a2的坐标.

19、(9分)某校餐厅计划购买12张餐桌和一批餐椅,现从甲、乙两商场了解到:同一型号的餐桌**每张均为200元,餐椅**每把均为50元.甲商场称:每购买一张餐桌赠送一把餐椅;乙商场规定:

所有餐桌椅均按**的八五折销售.那么,什么情况下到甲商场购买更优惠?

20、(9分)在争创全国卫生城市的活动中,我市一“青年突击队”决定义务清运一堆重达100吨的垃圾.开工后,附近居民主动参加到义务劳动中,使清运垃圾的速度比原计划提高了一倍,结果提前4小时完成任务,问“青年突击队”原计划每小时清运多少吨垃圾?

20、如图所示,△abc是边长为4cm的等边三角形,p是△abc内的任意一点,过点p作ef∥ab分别交ac、bc于点e、f,作gh∥bc分别交ab、ac于点g、h,作mn∥ac分别交ab、bc于点m、n.试求ef+gh+mn的值.

b卷(共50分)

一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)

21、若不等式组的解集为-122.一个四边形的边长依次为a、b、c、d,且满足a2+b2+c2+d2=2ac+2bd,则这个四边形为___

23、若关于分式方程有增根,求的值___

24、设a<b<0,a2+b2=4ab,则的值为___

25、如图8-6,p是矩形abcd内一点,若pa=3,pb=4,pc=5,则pd=__

二、解答题(本小题共三个小题,共30分。答案写在答题卡上)

26、有一水池,池底有泉水不断涌出,要将满池的水抽干,用12台水泵需5小时,用10台水泵需7小时,若要在2小时内抽干,至少需水泵几台?

27、读下列因式分解的过程,再回答所提出的问题:

1+x+x(x+1)+x(x+1)2=(1+x)1+x+x(x+1)]

(1+x)2(1+x)

(1+x)3

1)上述分解因式的方法是,共应用了次。

2)若分解1+x+x(x+1)+x(x+1)2+…+x(x+1)2004,则需应用上述方法次,结果是。

3)分解因式:1+x+x(x+1)+x(x+1)2+…+x(x+1)n(n为正整数).

28、已知点p是矩形abcd边ab上的任意一点(与点a、b不重合).

1)如图①,现将△pbc沿pc翻折得到△pec;再在ad上取一点f,将△paf沿pf翻折得到△pgf,并使得射线pe、pg重合,试问fg与ce的位置关系如何,请说明理由;

2)在(1)中,如图②,连接fc,取fc的中点h,连接gh、eh,请你探索线段gh和线段eh的大小关系,并说明你的理由;

3)如图③,分别在ad、bc上取点f、c′,使得∠apf=∠bpc′,与(1)中的操作相类似,即将△paf沿pf翻折得到△pfg,并将△pbc′沿pc′翻折得到△pec′,连接fc′,取fc′的中点h,连接gh、eh,试问(2)中的结论还成立吗?请说明理由.

2023年初二数学竞赛模拟

姓名得分 填空题 第1 20题每小题3分,第21 30题每小题4分,共100分 的末位数字是 2 已知rt abc的两直角边ac 5,bc 12,d是bc上一点。当ad是 a的平分线时,则cd 3 将四个数字 排成一个四位数,使得这个数是11的倍数,则这样得到的四位数共有 个。4 在数学中,规定 若...

2023年初二数学竞赛模拟题

景弘中学初二数学竞赛模拟试题。一 选择题,请将正确答案写在 中 4分 8 32分 1 是最大的负整数,是绝对值最小的有理数,则 a 1 b 0 cd 2007 2 在 abc中,且 c 30 a b,则 abc是 a 锐角三角形b 钝角三角形。c 有一个角是30的直角三角形 d 等腰直角三角形。3 ...

2023年初二数学竞赛模拟题

景弘中学初二数学竞赛模拟试题。一 选择题,请将正确答案写在 中 4分 8 32分 1 是最大的负整数,是绝对值最小的有理数,则 a 1 b 0 cd 2007 2 在 abc中,且 c 30 a b,则 abc是 a 锐角三角形b 钝角三角形。c 有一个角是30的直角三角形 d 等腰直角三角形。3 ...