1、计算《汽车刹车距离》中的k值。
解答过程:用最小二乘法来计算,过程如下:
我们已知该曲线方程为d=kv2+bv;令s=;
0;得出=0
0;得出=0
用matlab计算,其程序如下:
x=[29.3,44,58.7,73.3,88,102.7,117.3];
y=[42,73.5,116,173,248,343,464];
b=0.75;
c=0;p=polyfit(x^2,y-bx-c,1)
得出结果p=0.0257
即k=0.0257
2、用2.7节实物交换模型中介绍的无差别曲线的概念,讨论一下雇员和雇主之间的协议关系:
1)以雇员一天的工作时间t和工资w分别为横坐标和纵坐标,画出雇员无差别曲线族的示意图,解释你的曲线为什么是你画的那种形状。
2)如果雇主付计时工资,对不同的工资率(单位时间的工资)画出计时工资线族。根据雇主的无差别曲线族和雇主的计时工资线族,讨论双方将在怎样的一条曲线上达成协议。
3)雇员和雇主已经达成了一个协议(工作时间t1和工资w1).如果雇主想使雇员的工作时间增加到t2,它有两种方法,一是提高计时工资率,在协议的另一点(t2,w2)达成新的协议;二是超时工资制,即对工时t1任付原计时工资,对工时t2-t1付给更高的超时工资。试做图方法分析哪种办法对雇主更有利,指出这个结果的条件。
解答过程如下:
1)以雇员一天的工作时间t和工资w分别为横坐标和纵坐标作图:
由于工作时间越长则工资越高,则曲线是递增的,而且雇员希望工资随时间的增长率越大越好,所以曲线是下凸的。
如图表1所示:
图表 12)由于如果雇员不工作则雇主不会发工资,所以工资线族均过原点,工资率越大则随横坐标变大纵坐标的值越大,所示是增函数,又有雇员一天的时间只有24小时且不可能24小时都在工作,所以曲线增长到一定程度便不会继续增长。
如图表2所示:
图表 2将两条曲线画在同一坐标内,连接工资线族和雇员的无差别曲线族的切点。
如图3所示:
图表 33)假设雇主和雇员已经达成了协议(t1,w1),雇主想增加工时增加工资率和采用超时工资的方法反映在图表中如图所示:
如图中w1为没有增加工时时的工资,w2为工时增加到t2时的工资,w2’为采用超时工资制时的工资,从图中可以看出当p’曲线的斜率在一定范围内时w2’ 实用数学建模与软件应用实验报告。学院名称 理学院专业年级 信计142班姓名 高梓涵学号 2014014515 课程 实用数学建模与软件应用报告日期 2016.11.9 问题重述 设某团体有n个单位,每个单位有人数a,总席位为s 现有席位p个待分配。问 各单位分配多少个席位是公平的?这就是席位公平分配... 实验题目 人口类型。实验类型 基本操作。实验目的 掌握聚类分析的基本原理及方法。实验内容 要求学生在学习 掌握一些数学模型之后,能够理论联系实际,给出实际问题的相关数学模型,并能够编程求解,给出其结果。本次数学建模实习题目为 问题一 分析我国人口普查公报的相关数据,利用所学数学模型给出我国人口特征。... 一 函数用法。形式功能。expand expr展开expr nn的阶乘。f x expr 定义函数f 二 软件使用感想。mathematica软件在第一次使用后给我的感觉是相对于matlab更加容易操作,功能更全面,许多matlab解决不了的它都能做到。它的函数功能在图像绘制方面更加直观简介,命令语...数学建模实验
数学建模实验
数学建模实验