3.4 乘法公式。
一.选择题(共4小题)
1.下列多项式相乘不能用平方差公式的是( )
a.(2﹣x)(x﹣2) b.(﹣3+x)(x+3)
c.(2x﹣y)(2x+y) d.
2.下列运算正确的是( )
a.(a﹣2b)(a﹣2b)=a2﹣4b2
b.(﹣a+2b)(a﹣2b)=﹣a2+4b2
c.(a+2b)(﹣a+2b)=a2﹣4b2
d.(﹣a﹣2b)(﹣a+2b)=a2﹣4b2
3.若x2+2(m﹣1)x+4是一个完全平方式,则m的值为( )
a.2 b.3 c.﹣1or3 d.2or﹣2
4.如图所示的图形面积由以下哪个公式表示( )
第4题图)a.a2﹣b2=(a﹣b) (a+b) b.(a﹣b)2=a2﹣2ab+b2
c.(a+b)2=a2+2ab+b2 d.a2+ab=a(a+b)
二.填空题(共5小题)
5.如图,从边长为a的大正方形中剪掉一个边长为b的小正方形,将阴影部分沿虚线剪开,拼成右边的长方形,分别计算这两个图形的阴影部分的面积,验证了公式 .
第5题图)6.如图,从边长为(a+5)的正方形纸片中剪去一个边长为5的正方形,剩余部分沿虚线剪开再拼成一个长方形(不重叠无缝隙),则拼成的长方形的另一边长是 .
第6题图)7.先阅读后计算:为了计算4×(5+1)×(52+1)的值,小黄把4改写成5﹣1后,连续运用平方差公式得:4×(5+1)×(52+1)=(5﹣1)×(5+1)×(52+1)=(52﹣1)×(52+1)=252﹣1=624.
请借鉴小黄的方法计算:
1+)×结果是 .
8.已知多项式x2+mx+25是完全平方式,且m<0,则m的值为 .
9.已知一个长方形的长和宽分别是a,b,它的周长是6,面积是2,则a2+b2= .
三.解答题(共5小题)
10.阅读下文件,寻找规律:
已知x≠1,计算:
1﹣x)(1+x)=1﹣x2
1﹣x)(1+x+x2)=1﹣x3
1﹣x)(1+x+x2+x3)=1﹣x4
1﹣x)(1+x+x2+x3+x4)=1﹣x5
1)观察上式猜想:(1﹣x)(1+x+x2+x3+…+xn)=
2)根据你的猜想计算:①1+2+22+23+24+…+22018②214+215+…+2100.
11.已知大正方形的周长比小正方形的周长长96厘米,它们的面积相差960平方厘米,分别求出大正方形和小正方形的边长.
12.我们知道对于一个图形,通过不同的方法计算图形的面积可以得到一个数学等式.
例如:由图1可得到(a+b)2=a2+2ab+b2.
第12题图)
1)写出由图2所表示的数学等式: ;写出由图3所表示的数学等式: ;
2)利用上述结论,解决下面问题:已知a+b+c=11,bc+ac+ab=38,求a2+b2+c2的值.
13.图②是一个直角梯形.该图案可以看作由2个边长为a、b、c的直角三角形(图①)和1个腰长为c的等腰直角三角形拼成.
第13题图)
1)根据图②和梯形面积的不同计算方法,可以验证一个含a、b、c的等式,请你写出这个等式,并写出其推导过程;
2)若直角三角形的边长a、b、c满足条件:a﹣b=1,ab=4.试求出c的值.
14.杨辉,字谦光,南宋时期杭州人.在他2023年所著的《详解九章算法》一书中,辑录了如上所示的三角形数表,称之为“开方作法本源”图,并说明此表引自11世纪前半叶贾宪的《释锁算术》,并绘画了“古法七乘方图”.故此,杨辉三角又被称为“贾宪三角”.杨辉三角形,又称贾宪三角形,帕斯卡三角形,是二项式系数在三角形中的一种几何排列.在我国南宋数学家杨辉所著的《详解九章算术》(2023年)一书中用如图的三角形解释二项和的乘方规律.
结合杨辉三角并观察下列各式及其展开式:
1)根据上式各项系数的规律,求出(a+b)9的展开式.
2)利用上面的规律计算:25﹣5×24+10×23﹣10×22+5×2﹣1.
第14题图)
参***。一.1.a 2.d 3.c 4.a
二.5.a2﹣b2=(a+b)(a﹣b) 6.a+10 7. 2﹣ 8.﹣10 9.5
三.10.解:(1)由题可得,(1﹣x)(1+x+x2+x3+…+xn)=1﹣xn+1.
11.解:设大小正方形的边长分别为a厘米,b厘米,根据题意,得4a﹣4b=96,a2﹣b2=(a+b)(a﹣b)=960,把a﹣b=24代入,得a+b=40,解得a=32,b=8,则大小正方形的边长分别为32厘米,8厘米.
12.解:(1)由图2可得正方形的面积为(a+b+c)2=a2+b2+c2+2ab+2bc+2ac
由图3可得阴影部分的面积是(a﹣b﹣c)2=a2﹣b2﹣c2﹣2bc﹣2(a﹣b﹣c)c﹣2(a﹣b﹣c)b=a2+b2+c2+2bc﹣2ab﹣2ac.
即(a﹣b﹣c)2=a2+b2+c2+2bc﹣2ab﹣2ac.
2)由(1)可得a2+b2+c2=(a+b+c)2﹣(2ab+2bc+2ac)=(a+b+c)2﹣2(ab+bc+ac)=112﹣2×38=45.
13.解:(1)这个等式为:a2+b2=c2.
梯形的面积可表示为 (a+b)(a+b)=(a+b)2,或ab×2+c2=ab+c2,(a+b)2=ab+c2,即 a2+b2=c2.
2)由(1)中的关系式a2+b2=c2.,且c>0,得。
c=a﹣b=1,ab=4
c==3.14.解:(1)依据规律可得到各项的系数分别为1;9;26;84;126;126;84;26;9;1.
(a+b)9=a9+9a8b+26a7b2+84a6b3+126a5b4+126a4b5+84a3b6+26a2b7+9ab8+b9.
浙教版数学七年级下册3 4 教学设计 《乘法公式》
乘法公式 学习本节之前同学们已经在教材及课程中了解了整式的乘法,本节教师主要从两个方面带同学们了解乘法公式,分别为 平方差公式 完全平方公式。知识与能力目标 1 认识平方差公式 2 认识完全平方公式。过程与方法目标 1 经历探索乘法公式的过程 2 进一步发展符号感和推理能力。情感态度价值观目标 1 ...
浙教版初中科学七年级下册《1 3耳和听觉》教案设计
第三节耳和听觉。一 教学目标。1 了解耳的结构,知道耳的各部分功能,能说出听觉的形成过程。2 了解乐音的三个特性。3 认识噪声的危害和防止噪声的途径。二 重点和难点。重点 声音的传播速度与介质的关系 耳的结构及各部份功能2 难点 听觉的形成过程。三 课程资源开发。教师准备 幻灯,耳结构模型各 棉花。...
9青岛版初中数学七年级下册专题练习 3平行线的性质
9.3平行线性质练习题。1.如图,ac df,ab ef,点d e分别在ab ac上,若 2 50 求 1的度数。2.如图,直线ab cd,cgf 130 求 bfe的度数。3.如图,ab cd,ce平分 bcd,dce 18 求 b的度数。4.如图,ab cd,ced 90 aec 35 求 d的...