六年级数学拔高之抽屉原理 一

发布 2023-02-12 15:36:28 阅读 3884

抽屉原理(一)

例题1】某校六年级有学生367人,请问有没有两个学生的生日是同一天?为什么?把一年中的天数看成是抽屉,把学生人数看成是元素。

把367个元素放到366个抽屉中,至少有一个抽屉中有2个元素,即至少有两个学生的生日是同一天。

平年一年有365天,闰年一年有366天。把天数看做抽屉,共366个抽屉。把367个人分别放入366个抽屉中,至少在一个抽屉里有两个人,因此,肯定有两个学生的生日是同一天。

练习1:1、某校有370名2024年出生的学生,其中至少有2个学生的生日是同一天,为什么?

2、某校有30名学生是2月份出生的,能否至少有两个学生生日是在同一天?

个小朋友中,至少有几个小朋友在同一个月出生?

例题2】某班学生去买语文书、数学书、外语书。买书的情况是:有买一本的、二本的、也有三本的,问至少要去几位学生才能保证一定有两位同学买到相同的书(每种书最多买一本)?

首先考虑买书的几种可能性,买一本、二半、三本共有7种类型,把7种类型看成7个抽屉,去的人数看成元素。要保证至少有一个抽屉里有2人,那么去的人数应大于抽屉数。所以至少要去7+1=8(个)学生才能保证一定有两位同学买到相同的书。

买书的类型有:

买一本的:有语文、数学、外语3种。

买二本的:有语文和数学、语文和外语、数学和外语3种。买三本的:有语文、数学和外语1种。

3+3+1=7(种)把7种类型看做7个抽屉,要保证一定有两位同学买到相同的书,至少要去8位学生。

练习2:1、某班学生去买语文书、数学书、外语书、美术书、自然书。买书的情况是:

有买一本的、二本的、三本或四本的。,问至少要去几位学生才能保证一定有两位同学买到相同的书(每种书最多买一本)?

2、学校图书室有历史、文艺、科普三种图书。每个学生从中任意借两本,那么至少要几个同学才能保证一定有两人所借的图书属于同一种?

3、一只袋中装有许多规格相同但颜色不同的玻璃珠子,颜色有绿、红、黄三种,问最少要取出多少个珠子才能保证有两个同色的?

例题3】一只袋中装有许多规格相同但颜色不同的手套,颜色有黑、红、蓝、黄四种。问最少要摸出多少只手套才能保证有3副同色的?

把四种不同的颜色看成是4个抽屉,把手套看成是元素,要保证有1副同色的,就是1个抽屉里至少有2只手套,根据抽屉原理,最少要摸出5只手套。这时拿出1副同色的后,4个抽屉中还剩下3只手套。再根据抽屉原理,只要再摸出2只手套又能保证有一副手套是同色的,以此类推。

把四种颜色看成是4个抽屉,要保证有3副同色的,先考虑保证有一副就要摸出5只手套。这时拿出1副同色的后,4个抽屉中还剩下3只手套。根据抽屉原理,只要再摸出2只手套又能保证有一副手套是同色的。

以此类推,要保证有3副同色的,共摸出的手套有。

5+2+2=9(只)

答:最少要摸出9只手套才能保证有3副同色的。练习3:

1、一只袋中装有许多规格相同但颜色不同的手套,颜色有黑、红、蓝、黄四种。问最少要摸出多少只手套才能保证有4副同色的?

2、布袋中有同样规格但颜色不同的袜子若干只。颜色有白、黑、蓝三种。问:最少要摸出多少只袜子,才能保证有3双同色的?

3、一个布袋里有红、黄、蓝色袜子各8只。每次从布袋中拿出一只袜子,最少要拿出多少只才能保证其中至少有2双不同袜子?

例题4】任意5个不相同的自然数,其中至少有两个数的差是4的倍数,这是为什么?一个自然数除以4的余数只能是0,1,2,3。如果有2个自然数除以4的余数相同,那么这两个自然数的差就是4的倍数。

一个自然数除以4的余数可能是0,1,2,3,所以,把这4种情况看做时个抽屉,把任意5个不相同的自然数看做5个元素,再根据抽屉原理,必有一个抽屉中至少有2个数,而这两个数的余数是相同的,它们的差一定是4的倍数。所以,任意5个不相同的自然数,其中至少有两个数的差是4的倍数。

练习4:1、任意6个不相同的自然数,其中至少有两个数的差是5的倍数,这是为什么?

2、任意取几个不相同的自然数,才能保证至少有两个数的差是8的倍数?

3、证明在任意的(n+1)个不相同的自然数中,必有两个数之差为n的倍数。

例题5】能否在图29-1的5行5列方格表的每个空格中,分别填上1,2,3这三个数中的任一个,使得每行、每列及对角线ad、bc上的各个数的和互不相同?

由图29-1可知:所有空格中只能填写1或2或3。因此每行、每列、每条对角线上的5个数的和最小是1×5=5,最大是3×5=15。

从5到15共有11个互不相同的整数值,把这11个值看承11个抽屉,把每行、每列及每条对角线上的各个数的和看承元素,只要考虑元素和抽屉的个数就可得出结论是不可能的。因为每行、每列、每条对角线上的5个数的和最小是5,最大是15,从5到15共有11个互不相同的整数值。而5行、5列及两条对角线上的各个数的和共有12个,所以,这12条线上的各个数的和至少有两个是相同的。

练习5:1、能否在6行6列方格表的每个空格中,分别填上1,2,3这三个数中的任一个,使得每行、每列及对角线上的各个数的和互不相同?为什么?

2、证明在8×8的方格表的每个空格中,分别填上3,4,5这三个数中的任一个,在每行、每列及对角线上的各个数的和中至少有两个和是相同的。

3、在3×9的方格图中(如图29-2所示),将每一个小方格涂上红色或者蓝色,不论如。

何涂色,其中至少有两列的涂色方式相同。这是为什么?

六年级数学抽屉原理 一

第1讲抽屉原理 一 例1六年级有31名学生是在9月份出生的,那么其中至少有2名学生的生日是在同一天。为什么?例2在长度为2米的线段上任意点11个点,至少有两个点之间的距离不大于20厘米。为什么?例3任意4个自然数,其中至少有2个数的差是3的倍数。这是为什么?例4 1 从1到100的自然数中,任取52...

六年级数学 抽屉原理

六年级数学 抽屉原理。1 把不少于 n 1 个物口分成n类,则总有某一类中至少有2个物品。2 一般地,把不少于 m n 1 个物品分成n类,则总有某一类中到少有 m 1 个物品。3.把a个物体放进n n a 个抽屉,如果a n b c c 0 那么一定有一个抽屉中至少放进 b 1 个物体。4.如果有...

六年级数学抽屉原理 二

第2讲抽屉原理 二 例1今年入学的一年级新生中,有181人是同一年出生的。这些新生中,至少有多少人是同一年的同一个月出生的?例2有红 黄 蓝三种不同的玩具若干个,每名同学从中任意拿2个。至少多少名同学中一定有两名所拿的玩具种类相同?例3布袋里有4种不同颜色的小球,每种颜色的球至少2个,每次任意摸出2...