鸡兔同笼问题。
例1 (古典题)鸡兔同笼,头共46,足共128,鸡兔各几只?
分析如果 46只都是兔,一共应有 4×46=184只脚,这和已知的128只脚相比多了184-128=56只脚。如果用一只鸡来置换一只兔,就要减少4-2=2(只)脚。那么,46只兔里应该换进几只鸡才能使56只脚的差数就没有了呢?
显然,56÷2=28,只要用28只鸡去置换28只兔就行了。所以,鸡的只数就是28,兔的只数是46-28=18。
解:①鸡有多少只?
=28(只)
②免有多少只?
46-28=18(只)
答:鸡有28只,免有18只。
我们来总结一下这道题的解题思路:先假设它们全是兔。于是根据鸡兔的总只数就可以算出在假设下共有几只脚,把这样得到的脚数与题中给出的脚数相比较,看相差多少。
每差2只脚就说明有一只鸡;将所差的脚数除以2,就可以算出共有多少只鸡。我们称这种解题方法为假设法。概括起来,解鸡兔同笼问题的基本关系式是:
鸡数=(每只兔脚数× 兔总数- 实际脚数)÷(每只兔子脚数-每只鸡的脚数)
兔数=鸡兔总数-鸡数
当然,也可以先假设全是鸡。
例2 鸡与兔共有100只,鸡的脚比兔的脚多80只,问鸡与兔各多少只?
分析这个例题与前面例题是有区别的,没有给出它们脚数的总和,而是给出了它们脚数的差。这又如何解答呢?
假设100只全是鸡,那么脚的总数是2×100=200(只)这时兔的脚数为0,鸡脚比兔脚多200只,而实际上鸡脚比兔脚多80只。因此,鸡脚与兔脚的差数比已知多了(200-80)=120(只),这是因为把其中的兔换成了鸡。每把一只兔换成鸡,鸡的脚数将增加2只,兔的脚数减少4只。
那么,鸡脚与兔脚的差数增加(2+4)=6(只),所以换成鸡的兔子有120÷6=20(只).有鸡(100-20)=80(只)。
解:(2×100-80)÷(2+4)=20(只)。
100-20=80(只)。
答:鸡与兔分别有80只和20只。
例3 红英小学三年级有3个班共135人,二班比一班多5人,三班比二班少7人,三个班各有多少人?
分析1 我们设想,如果条件中三个班人数同样多,那么,要求每班有多少人就很容易了。由此得到启示,是否可以通过假设三个班人数同样多来分析求解。
结合下图可以想,假设二班、三班人数和一班人数相同,以一班为标准,则二班人数要比实际人数少5人。三班人数要比实际人数多7-5=2(人).那么,请你算一算,假设二班、三班人数和一班人数同样多,三个班总人数应该是多少?
解法1: 一班:[135-5+(7-5)]÷3=132÷3
=44(人)
二班:44+5=49(人)
三班:49-7=42(人)
答:三年级一班、 二班、三班分别有44人、 49人和 42人。
分析2 假设。
一、三班人数和二班人数同样多,那么,一班人数比实际要多5人,而三班要比实际人数多7人。这时的总人数又该是多少?
解法2:(135+ 5+ 7)÷3
=49(人)
49-5=44(人),49-7=42(人)
答:三年级一班、二班、三班分别有44人、49人和42人。
想一想:根据解法1、解法2的思路,还可以怎样假设?怎样求解?
例4 刘老师带了41名同学去北海公园划船,共租了10条船。每条大船坐6人,每条小船坐4人,问大船、小船各租几条?
分析我们分步来考虑:
①假设租的 10条船都是大船,那么船上应该坐 6×10= 60(人)。
②假设后的总人数比实际人数多了 60-(41+1)=18(人),多的原因是把小船坐的4人都假设成坐6人。
③一条小船当成大船多出2人,多出的18人是把18÷2=9(条)小船当成大船。
解:[6×10-(41+1)÷(6-4)
= 18÷2=9(条)
10-9=1(条)
答:有9条小船,1条大船。
例5 有蜘蛛、蜻蜓、蝉三种动物共18只,共有腿118条,翅膀20对(蜘蛛8条腿;蜻蜓6条腿,两对翅膀;蝉6条腿,一对翅膀),求蜻蜓有多少只?
分析这是在鸡兔同笼基础上发展变化的问题。观察数字特点,蜻蜓、蝉都是6条腿,只有蜘蛛8条腿。因此,可先从腿数入手,求出蜘蛛的只数。
我们假设三种动物都是6条腿,则总腿数为 6×18=108(条),所差 118-108=10(条),必然是由于少算了蜘蛛的腿数而造成的。所以,应有(118-108)÷(8-6)=5(只)蜘蛛。这样剩下的18-5=13(只)便是蜻蜓和蝉的只数。
再从翅膀数入手,假设13只都是蝉,则总翅膀数1×13=13(对),比实际数少 20-13=7(对),这是由于蜻蜓有两对翅膀,而我们只按一对翅膀计算所差,这样蜻蜓只数可求7÷(2-1)=7(只).
解:①假设蜘蛛也是6条腿,三种动物共有多少条腿?
6×18=108(条)
②有蜘蛛多少只?
(118-108)÷(8-6)=5(只)
③蜻蜒、蝉共有多少只?
18-5=13(只)
④假设蜻蜒也是一对翅膀,共有多少对翅膀?1×13=13(对)
⑤蜻蜒多少只?
(20-13)÷ 2-1)= 7(只)
答:蜻蜒有7只。
三年级数学奥数鸡兔同笼
鸡兔同笼问题 一 1.鸡兔同笼,头共46,足共128,鸡兔各几只?2.鸡与兔共有100只,鸡的脚比兔的脚多80只,问鸡与兔各多少只?3.鸡兔同笼,共30个头,88只脚。笼中鸡兔各有多少只?4.鸡兔同笼,共有28个头,68只脚。问鸡兔各有多少只?5.有蜘蛛 蜻蜓 蝉三种动物共18只,共有腿118条,翅...
四年级奥数鸡兔同笼问题
四年级奥数 鸡兔同笼问题。1.鸡兔同笼,共有头100个,足316只,那么鸡有 只,兔有 只。2.小明花了4元钱买贺年卡和明信片,共14张,贺年卡每张3角5分,明信片每张2角5分。他买了 张贺年卡,张明信片。3.东湖小学六年级举行数学竞赛,共20道试题。做对一题得5分,没有做一题或做错一题倒扣3分。得...
四年级奥数 鸡兔同笼问题
100 80 20 人 同样,也可以假设100人都是小和尚,同学们不妨自己试试。在下面的例题中,我们只给出一种假设方法。2 彩色文化用品每套19元,普通文化用品每套11元,这两种文化用品共买了16套,用钱280元。问 两种文化用品各买了多少套?分析与解 我们设想有一只 怪鸡 有1个头11只脚,一种 ...