四年级奥数鸡兔同笼

发布 2023-02-08 03:02:28 阅读 6308

知识网络。鸡兔同笼问题是我国古代数学著作《孙子算经》中的一个流传甚广的数学趣题:今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各有几何?

翻译成现代汉语语言为:今有鸡兔共居一笼,已知鸡头与兔头共35个,鸡脚与兔脚共94只。问鸡、兔各有几只?

这一古老的数学问题在现实生活中普遍存在,解法也多种多样,但一般采用的是假设法。

在解答应用题时,有时要采用“假设”的思想来分析,以找到解题途径。用假设思想解应用题,首先要根据题意去正确地判断应该怎样假设,并根据所做的假设,注意数量关系发生的变化,从所给的条件与变化了的数量关系的比较中做出适当的调整,来找到正确答案。

重点·难点。

运用假设法是求解这类可以转化为鸡兔同笼问题的应用题的关键。

学法指导。用假设法解应用题的步骤:一是要根据题意正确地判断怎样“假设”,二是依据假设,按照题目所给的数量关系进行推算,所得结果与题中对应的数量不符时,要能够正确地运用别的已知量加以调整,三是进而得出正确的答案。

经典例题。[例1]一个农夫有若干只鸡和兔,它们共有50个头和140只脚,问鸡、兔各有多少?

思路剖析。鸡兔同笼问题适用的基本方法是假设法。假设这笼里全是鸡,那么鸡脚的总数应为:

50×2=100(只),与实际相比较,脚减少的数为140-100=40(只)。脚减少的原因是每把一只兔当作一只鸡时,要少4-2=2(只)脚。所以实际的兔数是40÷(4-2)=20(只),若先假设的全是鸡,则先求出的是兔数。

解答。☆解法一:

设全是鸡,那么相应的鸡脚数:50×2=100(只)与实际相比,脚减少的数:140-100=40(只)

兔脚与鸡脚的差4-2=2(只)

实际兔数为40÷2=20(只)

那么实际的鸡数:50-20=30(只)

答:有鸡30只,有兔20只。

☆解法二:利用方程求解:

设农夫有鸡x只,那么有免(50-x)只。那么鸡有脚2×x只,兔有脚4×(50-x)只。

列方程为2×x+4×(5-x)=140

解方程2×x+200-4×x=140

2×x=60 x=30

50-x=50-30=20

则鸡有30只,兔有20只。

☆解法三:(不拘于传统的解法,让我们的思维发散,更具有创造性。)

农夫想知道鸡、兔分别有多少只,他做了一个有趣的设想,就是假设每只兔子又长出一个头来,把它劈开,变成“一头两脚”的两只“半兔”,半免和鸡都有两只脚,因而共有140÷2=70(只)头,从而多出了70-50=20(只)头,这就是兔子的数目,鸡的只数就是50-20=30(只)。

☆解法四:兔有4只脚,而鸡有2只脚,不过鸡有2只翅膀,如果把翅膀也当作脚,则鸡、兔都有4只脚,于是脚有50×4=200(只),但题中翅膀不算脚,因而有翅膀200-140=60(只),每只鸡有两只翅膀,则鸡数为60÷2=30(只),兔有50-30=20(只)。

☆解法五:农夫惊讶地看到鸡、兔们非凡的表演:每只鸡都用一只脚站立着,每只兔都用两只后腿站立起来。

这种情况下,地上的总腿数是原来的一半,即70只腿,鸡的脚数与头数相同,而兔的脚数是头数的两倍,因此从70里减去总的头数,剩下来的就是兔的头数:70-50=20(只),即有20只兔,那么有鸡30只。

☆解法六:我们还可以想像鸡、兔们经过专门训练后具有一些“特殊技能”,当它们听到哨音后,鸡飞起来,兔立即双脚站立起来。这时立在地上的应该都是兔,它的脚数:

140-50×2=40(只)。因此有免:40÷2=20(只),鸡有:

50-20=30(只)。

[例2]现有2分和5分的硬币共40枚,共值125分,问两种硬币各多少放?

思路剖析。利用假设法,假设40枚硬币全是2分的,则面值为80分,与实际相比减少了125-80=45(分),是由于把每个5分硬币少算了5-2=3(分)造成的,则可知有5分硬币45÷3=15(枚)。

解答。设全为2分的,则共值2×40=80(分)

与实际相比少125-80=45(分)

由于假设造成的差值5-2=3(分)

则有5分硬币45÷3=15(枚),2分硬币40-15=25(枚)。

答:有5分硬币15枚,2分硬币25枚。

点津。由假设造成的与实际的差值45分,是与把5分硬币当作2分硬币产生的差值相关的,而不是仅与5分硬币有关。

[例3]某次的小学数学奥林匹克竞赛,共有20道题,评分标准是:每做对一题得5分,每做错或不做一题扣3分。小贝贝参加了这次竞赛,得了68分,问:小贝贝做对了几道题?

思路剖析。假设小贝贝20道题全做对了,他应该得20×5=100(分),比实际上多了100-68=32(分),产生这一差异的原因是把做错或没做的题也算作做对的了,需要注意的是,做错或不做一题比做对一题应少得5+3=8(分),因此小贝贝做错或不做的题数:

32÷8=4(道)。解答。

=16(道)

答:小贝贝做对了16道题。

点津。由于做错和不做的题不但不得分,还要扣掉分数,那么与做对一道题相比,就不是简单相减的关系,而应该求和得出。类似于零上5℃与零下3℃相差是8℃,而不是2℃。

[例4]农场工人上山植树造林,绿化祖国,晴天时每人每天植树20棵,雨天时每人每天植树12棵,工人张宁接连几天共植树112棵,平均每天植树14棵。问:张宁植树这些天共有几个雨天?

思路剖析。题目中虽然没有问张宁工作了几天,但总共做了多少天是一个关键量,须先求出来。天数=总量÷平均数=112÷14=8(天)。

要求有多少个雨天,可假设每天都是晴天,那么应植20×8=160(棵),与实际相比,多植160-112=48(棵),是把雨天植树量当作20棵造成的,20-12=8(棵)是实际植树量与假设的差值。因此有雨天:48÷8=6(天)。

解答。=6(天)答:张宁植树这些天总共有6个雨天。

[例5]“和尚分馒头”题,记载于我国明代《算法统宗》。现代文译文:大和尚与小和尚共100名,分配100个馒头,大和尚每位给3个,小和尚3个人给1个,问大、小和尚各有多少人?

思路剖析。假设都是小和尚。因为小和尚3个人给1个馒头,分配100个馒头,应该有小和尚3×l00=300(人),比实际多了300-100=200(人)。

是由于把大和尚看做小和尚造成的,由于大和尚每位给3个馒头,相当于给9位小和尚的量。由于假设出现的差值即为9-l=8(人),那么大和尚的人数220÷8=25(人)。解答。

=25(人)

100-25=75(人)

答:大和尚有25人,小和尚有75人。

点津。本题中给出的条件“大和尚每位给3个,小和尚3个人给1个”,无法直接求出大、小和尚在人数或在馒头数上的差值,需通过条件中给出的比例关系求得。

[例6]四年级某班有学生68人,为了更好地学习,同学们自愿结成了14个学习小组。这些小组有的3人,有的5人,有的7人。而且3人组与5人组的组数相同。问三种学习小组各有几组?

思路剖析。前面的例题中,总体中的数量总是“非此即彼”只有两种,而本题**现了3种,似乎有些复杂。但题目中有个很重要的条件“而且3人组与5人组的组数相同”,是否可以利用这个条件将此题也转化成我们熟悉的鸡兔同笼题呢?

我们将“3人组与5人组组数相同”这个条件,转化为将他们组成4人组,那么组数应为这两组的组数和,因为4是3和5的平均数。

那么分组情况可以看做是两类:4人组和7人组。假设都是4人组,那么应有人数:

4×14=56(人),与实际人数的差值:68-56=12(人),由于假设出现的差值:7-4=3(人),则7人组的组数:

12÷3=4(组)。解答。

=4(组)那么3人组与5人组的组数(14-4)÷2=5(组)

答:学习小组中3人组和5人组各有5组,7人组有4组。

[例7]有蜘蛛、蜻蜓、蝉三种动物共18只,共有腿118条,翅膀20对(蜘蛛8条腿,蜻蜓6条腿、两对翅膀,蝉6条腿、一对翅膀),问蜻蜒有多少只?

思路剖析。依照例6的思路,我们应当将三种昆虫分成两类,从而将题目转化成与鸡兔同笼结构相同的题。分析题中的已知条件,找到可以归成一类的突破口。

三种昆虫有两种有翅膀,一种没翅膀,显然不能按此划分。三种昆虫都有腿,而且其中两种腿数相同,与例6思路相同,将三种昆虫按腿数分成两类:8腿虫和6腿虫。

假设18只昆虫都是8腿虫,则有腿8×18=144(条),与实际腿数的差值144-118=26(条),由于假设造成的差值8-6=2(条),那么有6腿虫:26÷2=13(只),知道了6腿虫的总数,就可以按翅膀对数再将它们分成两类:2对翅膀和1对翅膀。

则又转化成一道鸡兔同笼结构的题目。假设13只昆虫都有2对翅膀,则有2×13=26(对),与实际翅膀数的差值26-20=6(对),由于假设造成的差值2-1=1(对),那么蝉(一对翅膀)有:6÷1=6(只)。

解答。=13(只)……6腿虫数。

=6(只)……1对翅膀虫数。

13-6=7(只)……2对翅膀虫数。

答:蜻蜓有7只。

点津。恰当地把多组事物根据其特点划分成两类,转化成鸡兔同笼结构的题目是解题的关键。当组数大于2时,有时需要在同一题中解决多于1次的鸡兔同笼结构的题目,才能求得最终结果。

发散思维训练。

1.动物园里有一群鸵鸟和大象,它们共有36只眼睛和52只脚,问鸵鸟和大象各有多少?

四年级奥数鸡兔同笼

鸡兔同笼。1 有蜘蛛 蜻蜓 蝉三种动物共18只,共有腿118条,翅膀20对 蜘蛛8条腿 蜻蜓6条腿,两对翅膀 蝉6条腿,一对翅膀 求蜻蜓有多少只?2 鸡 兔共100只,鸡脚比兔脚多20只。问 鸡 兔各多少只?3 现有大 小油瓶共50个,每个大瓶可装油4千克,每个小瓶可装油2千克,大瓶比小瓶共多装20...

四年级奥数之鸡兔同笼

1 鸡 兔共有脚100只,若将鸡换成兔,兔换成鸡,则共有脚86只 问 鸡 兔各有几只?2 有一群鸡和兔,腿的总数比头的总数的2倍多18只,兔有几只?3 甲乙两人射击,若命中,甲得4分,乙得5分 若不中,甲失2分,乙失3分,每人各射10发,共命中14发,结算分数时,甲比乙多10分,问甲 乙各中几发?4...

四年级奥数之鸡兔同笼

1 实验小学四年级举行数学竞赛,一共出了10道题目,答对一道得10分,答错一题反扣5分 没有不答的情况 张华得了70分,他答对了几道题?2 小明家养的鸡和兔共120只,有一天小明数了数,知道鸡的脚比兔子的脚多60只。求他家养的鸡和兔子各有多少只?名学生去划船,一共乘坐10只船,其中大船坐6人,小船坐...