2023年江苏省高三数学“迎高考”综合测试题(1)
本卷特色:考查全面,题型简单,立足基础,易考高分。
1、填空题。(每题5分,共70分)
1. 已知集合,,则。
解析】由交集的定义可知,
2. 若,则。
解析】由复数的运算法则可知,,
3. 某工厂生产a、b、c三种不同型号的产品,产品数量之比依次为,现在用分层抽样的方法抽出容量为的样本,样本中a型号产品有15件,那么样本容量___
解析】根据样本a在样本总数中所占比例可知,,解得。
4. 若数列满足n*,为常数,则称数列为调和数列。
已知数列为调和数列,且…,则___
解析】仔细读题,得出调和数列的概念后,根据概念可分析出是一个等差数列,因此由等差数列的求和公式以及等差数列的性质,算出20
5. 已知锐角的面积为,,,则角c的大小为。
解析】由三角形面积公式,即可算出。
6. 若过点的直线与圆有公共点,则直线的斜率的取值范围是。
解析】直线与圆有公共点,也就说明直线与圆相交或相切。不妨设直线,解得。
7. 已知正方体的外接球体积是,那么正方体的棱长等于___
解析】由球的体积公式算出,再设棱长为,,
8. 下图为求的程序框图,其中①应为。
解析】本题是一个循环程序,到a=101时还要再加2,即当a=103时才可以停止,所以①应为。
9. 已知向量与的夹角为120°,且,则。
解析】由向量的模的计算公式可知。
10. 已知为正实数,且,那么的最小值是。
解析】根据基本不等式,
11. 已知双曲线的离心率为2,则实数___
解】由离心率公式可知,
12. 无论取任何实数,方程的实根个数都是___
解】作图后不难发现,无论直线如何旋转(不与轴垂直),它与曲线永远只有两个交点,所以方程实根个数为2.
13. 向面积为s的△abc内任意投一点p,则△pbc的面积小于的概率是___
解析】本题属几何概型,可作平行于bc的中位线ef,当p点落在△abc的中位线以下区域时,即可满足条件,所以概率为。
14. 若不等式组所表示的平面区域被直线分为面积相等的两部分,则实数___
解析】画出可行域,不难发现直线必过点,所以实数。
2、解答题。
15. (本题满分14分)在△abc中,角a、b、c对应的边分别为,且。
1)求角b的大小 (2)若,求的值。
解析】由余弦定理,
由(1)知,若,再由正弦定理,,即。
所以。16.(本题满分14分)如图,在直三棱柱中,,分别是棱上的点(点不同于点),且为的中点.
求证:(1)平面平面;
(2)直线平面.
解析】(1)∵是直三棱柱,∴平面。
又∵平面,∴。
又∵平面,∴平面。
又∵平面,∴平面平面。
(2)∵,为的中点,∴。
又∵平面,且平面,∴。
又∵平面,,∴平面。
由(1)知,平面,∴∥
又∵平面平面,∴直线平面。
17.(本题满分15分)统计表明,某种型号的汽车在行驶过程中每小时的耗油量(升)关于行驶速度(千米/小时)的函数关系式可表示为。
已知甲乙两地相距100千米。
1)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地耗油多少升?
2)当汽车以多大的速度匀速行驶时,从甲地到乙地的耗油量最少,最少为多少升?
解析】(1)当,汽车从甲地到乙地用了2.5小时,耗油量(升)
2)设从甲地到乙地的耗油量为升,由题意。
所以,令可得,分析单调性可知,在处同时取得极小值和最小值,最少耗油升。
18.(本题满分15分)如图,椭圆e:的左焦点为,右焦点为,离心率。过的直线交椭圆于a、b两点,且△的周长为8.
ⅰ)求椭圆e的方程。
ⅱ)设动直线与椭圆e有且只有一个公共点p,且与直线相交于点q.试**:在坐标平面内是否存在定点m,使得以pq为直径的圆恒过点m?若存在,求出点m的坐标;若不存在,说明理由。
解析】(ⅰ设则。
的周长为。椭圆的方程为。
ⅱ)由对称性可知设与 直线。
(*)对恒成立, 得。
19.(本题满分16分)
设,曲线与直线在(0,0)点相切。
(ⅰ)求的值。 (证明:当时,
20. 设的公比不为1的等比数列,其前项和为,且成等差数列。
1)求数列的公比;
2)证明:对任意,成等差数列。
解析】(1)设数列的公比为()
由成等差数列,得,即
由得,解得(舍去)
2)证法一:对任意
所以,对任意,成等差数列
证法二对任意,
因此,对任意,成等差数列。
2023年江苏高考数学模拟测试题
2013年江苏省高三数学 迎高考 综合测试题 1 本卷特色 考查全面,题型简单,立足基础,易考高分。1 填空题。每题5分,共70分 1.已知集合,则。2.若,则。3.某工厂生产a b c三种不同型号的产品,产品数量之比依次为,现在用分层抽样的方法抽出容量为的样本,样本中a型号产品有15件,那么样本容...
2019江苏高考数学模拟卷
江苏高考模拟精选 一 一 填空题 本大题共14小题,每小题5分,共70分 请将答案填入答题纸填空题的相应答题线上 1 复数在复平面上对应的点位于第象限 2 设全集,集合,则实数a的值为 3 过点且倾斜角是直线的倾斜角的两倍的直线方程是 4 若连续投掷两枚骰子分别得到的点数 作为点的坐标,求点落在圆内...
2023年江苏高考数学模拟试卷
一 填空题 本大题共14小题,每小题5分,共70分。不需写出解答过程 请把答案直接填写在答题卡相应位置上。1 为虚数单位,计算 2.观察下式 1 12,2 3 4 32,3 4 5 6 7 52,4 5 6 7 8 9 10 72,则可得出一般结论 3 若关于的方程的一个根小于,另一个根大于,则实数...