满分:150分时间:120分钟)
友情提醒:试卷中所有答案都必须书写在答题卷指定的位置上,答案写在试卷上无效,请务必注意试题序号和答题序号相对应,考试结束后,只上交答题卷.
一、选择题:(每题3分,满分24分)
1.下列各数中是负数的是(▲)
a.-(3) b.-(3)2 c.-(2)3 d.|-2|
2.若三角形两条边的长分别为,则第三条边的长可以是(▲)
a. 2 b. 3c.4d. 5
3.世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.00 000 0076克,用科学记数法表示是(▲)
a.7.6×10-6克 b.7.6×10-7克 c.7.6×10-8克 d.7.6×10-9克。
4.如图,数轴上a、b两点表示的数分别为和5.1,则a、b两点之间表示整数的点共有( )
5.小明等五位同学以各自的年龄为一组数据,计算出这组数据的方差是0.5,则10年后小。
明等五位同学年龄的方差(▲)
a.增大b.不变c.减小d.无法确定。
6..能说明命题“关于x的一元二次方程x2+mx+4=0,当m<-2时必有实数解”是假命题的一个反例为(▲)
a. m=﹣4b. m=﹣3c. m=﹣2d. m=4
7如右图,小明课间把老师的三角板的直角顶点放在黑板的两。
条平行线上,已知,则的度数为(▲)
abcd.
8.我们定义一种变换§:对于一个由5个数组成的数列s1,将其中的每个数换成该数在s1**现的次数,可得到一个新数列s2.例如:
当数列s1是 (4,2,3,4,2)时,经过变换§可得到的新数列s2是(2,2,1,2,2).若数列s1可以由任意5个数组成,则下列的数列可作为s2的是。
a. (1,2,1,2,2b. (2,2,2,3,3)
c. (1,1,2,2,3d. (1,2,1,1,2)
二、填空题(每空3分,满分27分)
9.若,则的值是 ▲
10.因式分解。
11.若二次根式是最简二次根式,则最小的正整数= ▲
12.如图①是一张长方形纸条,将纸条沿bd折叠成图②,∠cbd=20°,再沿de折叠成图③,则图③中的∠cdf的度数是 ▲
13.一个y关于x的函数同时满足两个条件:①图像经过(1,2)点;②当时.y随x的增大而减小,这个函数解析式为 ▲ 写出一个即可) .
14.如图有一圆形展厅,在其边缘上的点处安装了一台监视器,它的监控角度是58°,为了监控整个展厅,最少需在圆形边缘上共安装这样的监视器 ▲ 台.
15.如图,矩形abcd中,由8个面积均为1的小正方形组成的l型模板如图放置,则矩形abcd的周长为 ▲
16.如图①,将四边形纸片abcd沿两组对边中点连线剪切为四部分,将这四部分密铺可得到如图②所示的四边形,这个四边形是 ▲ 若要密铺后图②的图形为矩形,则四边形abcd需要满足的条件是 ▲
三、解答题(本大题共11题,满分99分)
17.(本题满分6分)计算:
18.(本题满分6分)解方程组:
19.(本题满分9分)化简代数式,并判断当x满足不等式组时该代数式的符号.
20.(本题满分8分)今年我市体育中考的现场选测项目中有一项是“排球30秒对墙垫球”,为了了解某学校九年级学生此项目平时的训练情况,随机抽取了该校部分九年级学生进行测试,根据测试结果,制作了如下尚不完整的频数分布表:
1)填空:a= ▲b= ▲
2)这个样本数据的中位数在第 ▲ 组;
3)下表为《体育与健康》中考察“排球30秒对墙垫球”的中考评分标准,若该校九年级有550名学生,请你估计该校九年级学生在这一项目中得分在7分以上(包括7分)学生约有多少人?
21.(本题满分8分)阅读对话,解答问题:
1)试用树状图或列表法写出满足关于x的方程x2+px+q=0的所有等可能结果;
2)在(1)中方程有实数根的概率是 ▲
22.(本题满分8分)如图,在平行四边形abcd中,ae是bc边上的高,将沿方向平移,使点e与点c重合,得.
1)求证:;
2)若,当ab与bc满足什么数量关系时,四边形是菱形?证明你的结论.
23.(本题满分10分)如图,在平面直角坐标系中有rt△abc,已知∠a=90°,ab=ac,a(-2,0)、b(0,1)、c(d,2).
1)求d的值;
2)将△abc沿x轴的正方向平移,在第一象限内b、c两点的对应点b′、c′正好落在某反比例函数y1的图像上.请求出这个反比例函数y1和此时的直线b′c′的解析式y2;
3)当x满足什么条件时,y1>y2.
24.(本题满分8分)如图,在某海滨城市o附近海面有一股台风,据监测,当前台风中心位于该城市的东偏南70°方向200千米的海面p处,并以20千米/时的速度向西偏北25°的pq方向移动,台风侵袭范围是一个圆形区域,当前半径为60千米,且圆的半径以10千米/时的速度不断扩张.
1)当台风中心移动4小时时,受台风侵袭的圆形区域半径增大到 ▲ 千米;当台风中心移动t小时时,受台风侵袭的圆形区域半径增大到 ▲ 千米.
2)当台风中心移动到与城市o距离最近时,这股台风是否侵袭这座海滨城市?请说明理由(参考数据,).
25.(本题满分10分)
观察思考。某种在同一平面进行传动的机械装置如图1,图2是它的示意图.其工作原理是:滑块q在平直滑道l上可以左右滑动,在q滑动的过程中,连杆pq也随之运动,并且pq带动连杆op绕固定点o摆动.在摆动过程中,两连杆的接点p在以op为半径的⊙o上运动.数学兴趣小组为进一步研究其中所蕴含的数学知识,过点o作oh⊥l于点h,并测得oh=4分米,pq=3分米,op=2分米.
解决问题。点q与点o间的最小距离是 ▲ 分米;点q与点o间的最大距离是 ▲ 分米;点q在l上滑到最左端的位置与滑到最右端位置间的距离是 ▲ 分米.
如图3,小明同学说:“当点q滑动到点h的位置时,pq与⊙o是相切的.”你认为他的判断对吗?为什么?请写出理由.
①小丽同学发现:“当点p运动到oh上时,点p到l的距离最小.”事实上,还存在着点p到l距离最大的位置,此时,点p到l的距离是 ▲ 分米;
当op绕点o左右摆动时,所扫过的区域为扇形,求这个扇形面积最大时圆心角的度数.
26.(本题满分12分)某种商品的进价为每件50元,定价为每件60元。为了**,决定凡是购买件以上的,每多买一件,售价就降低0.10元(例如,某人买20件,于是每件降价0.
10×(20-10)=1元,就可以按59元/件的**购买),但是最低价为55元/件.同时,商店在**中,还需支出税收等其他杂费1.6元/件.
1)求顾客一次至少买多少件,才能以最低价购买?
2)求出当一次**x件时(x>10)利润y(元)与**量x(件)之间的函数关系式;
3)有一天,一位顾客买了47件,另一位顾客买了60件,结果发现卖了60件反而比卖了47件赚的钱少.为了使每次卖的越多赚的钱也越多,在其他**条件不变的情况下,最低价55元/件至少要提高到多少?请说明理由.
27.(本题满分14分)
**新知:如图1,已知ad∥bc,ad=bc,点m、n是直线cd上任意两点.则s△abm
▲ s△abn.(填“>”或者“=”
如图2,已知ad∥be,ad=be,ab∥cd∥ef,点m是直线cd上任一点,点n是直线ef上任一点.上述结论是否依然成立,请说明理由.
结论应用:如图3,抛物线的顶点为c(1,4),交x轴于点a(3,0),交y轴于点d.试**在抛物线上是否存在除点c以外的点e,使得△ade与△acd的面积相等?若存在,请求出此时点e的坐标,若不存在,请说明理由.
连云港2024年中考数学模拟试题1
参***。请在指定的区域内作答, 超出长方形边框区域的答案无效。
22. (本题满分8分)
1)(4分)方法不唯一,酌情给分;
(3分) 证明略.
23. (本题满分10分)
解:(1)(3分)作cn⊥x轴于点n,易证rt△can ≌ rt△aob(hl),an=bo=1,no=na+ao=3,又∵点c在第二象限,∴d=-3;
2)(4分)设△abc沿x轴的正方向平移c个单位,则c′(,2),则b′(c,1)
连云港2024年中考物理模拟试题
2016年连云港市物理中考试卷。一 选择题 本题共10小题,每小题2分,共20分。每小题给出的四个选项中只有一个符合题意 1 下列估计的数据与实际相符的是。a 两个鸡蛋的重力大小为10n b 人正常心跳一次的时间为2s c 一个苹果的质量为150g d 夏天室内空调的适宜温度约为0 2.如图所示的四...
连云港市2024年中考语文模拟试题 四
一 积累与运用 30分 1 阅读下面一段文字,回答问题。7分 古往今来,大凡学识渊博,思想深su 的 成功名者 无不从书籍中获得知识营养和智慧的灵光。读书是一种求索,也是一种享受。手握书卷,在或昏黄或明净的灯光里,让灵魂与思想在散发着书香的字里行间 o 游,或与隽 永的小品文产生共鸣或在对美文的欣赏...
2024年江苏连云港中考化学真题
2012年江苏省连云港市中考化学真题。一 选择题 本题包括12小题,每小题2分,共24分 每小题只有一个选项符合题意 1 2012连云港 以下列举的连云港特产中,主要成分 水除外 属于无机化合物的是。2 2012连云港 下列化学用语表达正确的是 a 钠原子结构示意图 b 硫离子 s 2 c 两个氮分...