一、选择题(每小题3分,共30分)
1. “抛一枚均匀硬币,落地后正面向上”这一事件是( b )
a.必然事件 b. 随机事件 c. 确定事件 d. 不可能事件。
2. 从只装有4个红球的袋中随机摸出一球,若摸到白球的概率是,摸到红球的概率是,则( b )
a. =1, =1 b. =0, =1 c. =0, =d. =
3. 如图,一个可以自由转动的转盘被等分成6个扇形区域,并涂上相应的颜色,转动转盘,转盘停止后,指针指向蓝色区域的概率是( b )
abcd.
4. 掷一个质地均匀的正方体骰子,当骰子停止后,朝上一面的点数为5的概率是( c )
a. 1bcd. 0
5. 在抛掷一枚硬币的实验中,某一组做了500次实验,其出现正面的频率是49.6%,可以推知出现正面的次数是( a )
a. 248b. 250c. 258d. 无法确定。
6.(2015绍兴)在一个不透明的袋子中装有除颜色外其他均相同的3个红球和2个白球,从中任意摸出一个球,则摸出白球的概率是( b )
abcd.
7. 一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有6个黄球。 每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么可以推算出n大约是( d )
a. 6b. 10c. 18d. 20
8.(2015德州)经过某十字路口的汽车,可能直行,也可能左转或者右转。 如果这三种可能。
性大小相同,则经过这个十字路口的两辆汽车一辆左转,一辆右转的概率是( c )
abcd.
9. 如图,转动两个转盘,当指针所指的数之和为奇数时,小明胜,否则小亮胜,则小亮获胜的概。
率是( d )
abcd.
10. 一个盒子里有完全相同的三个小球,球上分别标有数字-1,1,2. 随机摸出一个小球(不放回),其数字记为,再随机摸出另一个小球,其数字记为,则满足关于的方程=0有实数根的概率是( a )
abcd.
二、填空题(每小题3分,共18分)
11. 如图,是一幅普通扑克牌中的13张黑桃牌,将它们洗均匀后正面向下放在桌子上,从中任意抽取一张,则抽出的牌点数小于9的概率为。
12. 在英语句子“wish you success!”(祝你成功)中任选一个字母,这个字母为“s”的概。
率是。13. 在一个不透明的口袋中有颜色不同的红、白两种小球,其中红球3只,白球n只,若从袋中任取一个球,摸出白球的概率为,则n9)
14. 为了估计不透明的袋子里装有多少白球,先从袋中摸出10个球都做上标记,然后放回袋中去,充分摇匀后再摸出10个球,发现其中有一个球有标记,那么你估计袋中大约有个白球 .
15.(2015河南)现有四张分别标有数字1,2,3,4的卡片,它们除数字外完全相同,把卡片背面朝上洗匀,从中随机抽取一张后放回,再背面朝上洗匀,从中随机抽取一张,则两次抽取的卡片所标数字不同的概率是。
16. 如图,第(1)个图有1个黑球;第(2)个图为3个同样大小球叠成的图形,最下层的2个球为黑色,其余为白色;第(3)个图为6个同样大小球叠成的图形,最下一层的3个球为黑色,其余为白色;则从第(n)个图中随机取出一个球是黑球的概率是。
三、解答题(共8题,共72分)
17.(本题8分)布袋中装有1个红球,2个白球,3个黑球,它们除了颜色外完全相同,从袋中任意摸出一个球,求摸出的球是白球的概率 .
解: 18.(本题8分)一个口袋中有3个大小相同的小球,球面上分别写有数字,3,从袋中随机地摸出一个小球,记录下数字后放回,再随机地摸出一个小球。
(1)请用树形图或列表法中的一种,列举出两次摸出的球上数字的所有可能结果;
(2)求两次摸出的球上的数字和为偶数的概率。
解:(1)共有9种等可能的结果;
(2)由(1)得:两次摸出的球上的数字和为偶数的有5种情况,所以两次摸出的球上的数字和为偶数的概率为。
19.(本题8分)商店只有雪碧、可乐、果汁、奶汁四种饮料,每种饮料数量充足,某同学去该店购买饮料,每种饮料被选中的可能性相同。
1)若他去买一瓶饮料,则他买到奶汁的概率是 ;
2)若他两次去买饮料,每次买一瓶,且两次所买饮料品种不同,请用树状图或列表法求出他恰好买到雪碧和奶汁的概率 .
解:(1);
(2)∵共有12种等可能结果,他恰好买到雪碧和奶汁的有两种情况。
∴他恰好买到雪碧和奶汁的概率为: .
20.(本题8分)在一个不透明的口袋中装有红、白、黑三种颜色的小球若干个,它们只有颜色不同,其中有白球2个、黑球1个。 已知从中任意摸出1个球得白球的概率为。
1)求口袋中有多少个红球;
2)求从袋中一次摸出2个球,得一红一白的概率。(要求画出树状图)
解:(1)设袋中有x个红球,据题意得,解得x=1
袋中有红球1个;
(2)p(摸得一红一白)=
21.(本题8分)“阳光体育”运动关乎每个学生未来的幸福生活,今年五月,我市某校开展了以“阳光体育我是冠军”为主题的一分钟限时跳绳比赛,要求每个班选2-3名选手参赛,现将80名选手比赛成绩(单位:次/分钟)进行统计。
绘制成频数分布直方图,如图所示 .
1)图中a值为 ;
(2)将跳绳次数在160-190的选手依次记为、、,从中随机抽取两名选手作经验交流,请用画树状图或列表法求恰好抽取到的选手是和的概率 .
解:(1)根据题意得:a=80-8-40-28=4,故答案为4 ;
2)画树状图略, ∵共有12种等可能的结果,恰好抽取到选手和的有两种情况。
恰好抽取到选手和的概率为: .
22.(本题10分)(1)甲、乙、丙、丁四人做传球游戏:第一次由甲将球随机传给乙、丙、丁的某一人,从第二次起,每一次都由持球者将球再随机传给其他三人的某一人。
求第二次传球后球回到甲手里的概率。(请用“画树状图”或“列表”等方式给分析过程)
2)如果甲跟另外n(n≥2)个人做(1)同样的游戏,那么,第三次传球后球回到甲手里的概率是请直接写出结果).
解:(1)画树状图略,∵共有9种等可能的结果,其符合要求的结果有3种。
∴p(第二次传球后球回到甲手里)=
23.(本题10分)某校组织了一次初三科技小制作比赛,有a.b.c,d四个班共提供了100件参赛作品。 c班提供的参赛作品的获奖率为50%,其他几个班的参赛作品情况及获奖情况绘制在下列图l和图2两幅尚不完整的统计图中 .
(1)b班参赛作品有多少件?
2)请你将图②的统计图补充完整;
3)通过计算说明,哪个班的获奖率高?
4)将写有a,b,c,d四个字母的完全相同的卡片放入箱中,从中一次随机抽出两张卡片,求抽到a,b两班的概率 .
解:(1)100(1-35%-20%-20%)=25(件),答:b班参赛作品有25件;
(2)∵c班提供的参赛作品的获奖率为50%
∴c班的参赛作品的获奖数量为:100×20%×50%=10(件),画图略;
(3)a班的获奖率为×100%=40%,b班的获奖率为×100%=44%,c班的获奖率为50%,d班的获奖率为×100%=40%,故b班的获奖率高;
(4)画图略,一共有12种等可能的情况,符合题意的有2种情况,则从中一次随机抽出两张卡片,抽到a,b两班的概率为。
24.(本题12分)已知m(x,y)是平面直角坐标系xoy中的点,其中x是从l三个数中任取的一个数,y是从l四个数中任取的一个数 .
l)计算由x、y确定的点m(x,y)在函数y= -x+5的图象上的概率;
2)小明和小红约定做一个游戏,其规则为:若x、y满足xy>6则小明胜;若x、y满足xy<6则小红胜,这个游戏公平吗?说明理由。 若不公平,请写出公平的游戏规则;
3)定义“点m(x,y)在直线x+y=n上”为事件a(2≤n≤7,n为整数),则当a的概率最大时,n的所有可能的值为 .(不需要解答过程)
人教版九年级数学上第25章概率初步单元测试题含答案
一 选择题 共10小题 1 下列事件中,属于必然事件的是 a 明天我市下雨 b 抛一枚硬币,正面朝下。c 购买一张福利彩票中奖了 d 掷一枚骰子,向上一面的数字一定大于零。2 在一个不透明的盒子里装有3个黑球和1个白球,每个球除颜色外都相同,从中任意摸出2个球,下列事件中,不可能事件是 a 摸出的2...
人教版九年级数学上册《第25章概率初步》
初中数学试卷。第25章概率初步 一 选择题。1 一个均匀的正20面体形状的骰子,其中一个面标有 1 两个面标有 2 三个面标有 3 四个面标有 4 五个面标有 5 其余的面标有 6 将这个骰子掷出后,6 朝上的概率是 a b c d 2 下列说法错误的是 a 随机事件的概率介于0至1之间。b 明天降...
新人教版九年级上第25章《概率初步》基础练习含答案 3套
a.b.c.d.2 有两组扑克牌各三张,牌面数字均为1,2,3,随意从每组牌中各抽一张,数字之和等于4的概率是 a.b.c.d.二 填空题 每小题4分,共8分 3 有4条线段,分别为3 cm,4 cm,5 cm,6 cm,从中任取3条,能构成直角三角形的概率是 4 小明与父母从广州乘火车回梅州参观某...