2 必修3第二章统计教案

发布 2022-07-15 08:19:28 阅读 3135

2.1 随机抽样。

2.1.1 简单随机抽样。

三维目标。1.能从现实生活或其他学科中推出具有一定价值的统计问题,提高学生分析问题的能力。

2.理解随机抽样的必要性和重要性,提高学生学习数学的兴趣。

3.学会用抽签法和随机数法抽取样本,培养学生的应用能力.

重点难点。教学重点:理解随机抽样的必要性和重要性,用抽签法和随机数法抽取样本.

教学难点:抽签法和随机数法的实施步骤.

课时安排:1课时。

教学过程。导入新课:抽样的方法很多,某个抽样方法都有各自的优越性与局限性,针对不同的问题应当选择适当的抽样方法.简单随机抽样.

推进新课;提出问题。

(1)在2023年美国**选举前,一份颇有名气的杂志(literary digest)的工作人员做了一次民意测验。调查兰顿(当时任堪萨斯州州长)和罗斯福(当时的**)中谁将当选下一届**。为了了解公众意向,调查者通过**簿和车辆登记簿上的名单给一大批人发了调查表(注意在2023年**和汽车只有少数富人拥有).

通过分析收回的调查表,显示兰顿非常受欢迎,于是此杂志**兰顿将在选举中获胜。

实际选举结果正好相反,最后罗斯福在选举中获胜,其数据如下:

你认为**结果出错的原因是什么?由此可以总结出什么教训?

2)假设你作为一名食品卫生工作人员,要对某食品店内的一批小包装饼干进行卫生达标检验,你准备怎样做?显然,你只能从中抽取一定数量的饼干作为检验的样本.那么,应当怎样获取样本呢?

3)请总结简单随机抽样的定义。

讨论结果:1)**结果出错的原因是:在民意测验的过程中,即抽取样本时,抽取的样本不具有代表性.2023年拥有**和汽车的美国人只是一小部分,那时大部分人还很穷.其调查的结果只是富人的意见,不能代表穷人的意见.

由此可以看出,抽取样本时,要使抽取出的样本具有代表性,否则调查的结果与实际相差较大.

2)要对这批小包装饼干进行卫生达标检查,只能从中抽取一定数量的饼干作为检验的样本,用样本的卫生情况来估计这批饼干的卫生情况.如果对这批饼干全部检验,那么费时费力,等检查完了,这批饼干可能就超过保质期了,再就是会破坏这批饼干的质量,导致无法**.获取样本的方法是:将这批小包装饼干,放入一个不透明的袋子中,搅拌均匀,然后不放回地摸取(这样可以保证每一袋饼干被抽到的可能性相等),这样就可以得到一个样本.通过检验样本来估计这批饼干的卫生情况.这种抽样方法称为简单随机抽样.

3)一般地,设一个总体含有n个个体,从中逐个不放回地抽取n个个体作为样本(n≤n),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.最常用的简单随机抽样方法有两种:抽签法和随机数法.

提出问题。1)抽签法是大家最熟悉的,也许同学们在做某种游戏,或者选派一部分人参加某项活动时就用过抽签法。例如,高一(2)班有45名学生,现要从中抽出8名学生去参加一个座谈会,每名学生的机会均等。

我们可以把45名学生的学号写在小纸片上,揉成小球,放到一个不透明袋子中,充分搅拌后,再从中逐个抽出8个号签,从而抽出8名参加座谈会的学生。

请归纳抽签法的定义。总结抽签法的步骤。

2)你认为抽签法有什么优点和缺点?当总体中的个体数很多时,用抽签法方便吗?

3)随机数法是利用随机数表或随机骰子或计算机产生的随机数进行抽样.我们仅学习随机数表法即利用随机数表产生的随机数进行简单随机抽样的方法.

怎样利用随机数表产生样本呢?下面通过例子来说明。

假设我们要考察某公司生产的500克袋装牛奶的质量是否达标,现从800袋牛奶中抽取60袋进行检验。利用随机数表抽取样本时,可以按照下面的步骤进行。

第一步,先将800袋牛奶编号,可以编为000,001,…,799.

第二步,在随机数表中任选一个数。例如选出第8行第7列的数7(为了便于说明,下面摘取了附表1的第6行至第10行。)

第三步,从选定的数7开始向右读(读数的方向也可以是向左、向上、向下等),得到一个三位数785,由于785<799,说明号码785在总体内,将它取出;继续向右读,得到916,由于916>799,将它去掉。按照这种方法继续向右读,又取出567,199,507,…,依次下去,直到样本的60个号码全部取出。这样我们就得到一个容量为60的样本。

归纳:(1)一般地,抽签法就是把总体中的n个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本。

抽签法的步骤是:

1°将总体中个体从1—n编号;

2°将所有编号1—n写在形状、大小相同的号签上;

3°将号签放在一个不透明的容器中,搅拌均匀;

4°从容器中每次抽取一个号签,并记录其编号,连续抽取n次;

5°从总体中将与抽取到的签的编号相一致的个体取出.

2)随机数表法的步骤:

1°将总体中个体编号;(一位数编为0—9,二位数编为00—99,三位数编为000—999,依次类推)。

2°在随机数表中任选一个数作为开始;

3°规定从选定的数读取数字的方向;

4°开始读取数字,若不在编号中,则跳过,若在编号中则取出,依次取下去,直到取满为止;

5°根据选定的号码抽取样本.

应用示例。例1 某车间工人加工一种轴共100件,为了了解这种轴的直径,要从中抽取10件轴在同一条件下测量,如何采用简单随机抽样的方法抽取样本?

分析:简单随机抽样有两种方法:抽签法和随机数表法,所以有两种思路.

解法一(抽签法):

将100件轴编号为1,2,…,100;

做好大小、形状相同的号签,分别写上这100个号码;

将这些号签放在一个不透明的容器内,搅拌均匀;

逐个抽取10个号签;

然后测量这10个号签对应的轴的直径的样本.

解法二(随机数表法):

将100件轴编号为00,01,…99;

在随机数表中选定一个起始位置,如取第22行第1个数开始(见教材附录1:随机数表);

规定读数的方向,如向右读;

依次选取10个为。

68,34,30,13,70,55,74,77,40,44,则这10个号签相应的个体即为所要抽取的样本.

变式训练。1.下列抽样的方式属于简单随机抽样的有。

1)从无限多个个体中抽取50个个体作为样本.

2)从1 000个个体中一次性抽取50个个体作为样本.

3)将1 000个个体编号,把号签放在一个足够大的不透明的容器内搅拌均匀,从中逐个抽取50个个体作为样本.

4)箱子里共有100个零件,从中选出10个零件进行质量检验,在抽样操作中,从中任意取出一个零件进行质量检验后,再把它放回箱子.

5)福利彩票用摇奖机摇奖.

解析:(1)中,很明显简单随机抽样是从有限多个个体中抽取,所以(1)不属于;(2)中,简单随机抽样是逐个抽取,不能是一次性抽取,所以(2)不属于;很明显(3)属于简单随机抽样;(4)中,抽样是放回抽样,但是简单随机抽样是不放回抽样,所以(4)不属于;很明显(5)属于简单随机抽样.

答案:(3)(5)

2.要从某厂生产的30台机器中随机抽取3台进行测试,写出用抽签法抽样样本的过程.

分析:由于总体容量和样本容量都较小,所以用抽签法.

解:抽签法,步骤:第一步,将30台机器编号,号码是01,02,…,30.

第二步,将号码分别写在一张纸条上,揉成团,制成号签。第三步,将得到的号签放入不透明的袋子中,并充分搅匀。第四步,从袋子中依次抽取3个号签,并记录上面的编号。

第五步,所得号码对应的3台机器就是要抽取的样本.

知能训练。1.为了了解全校240名学生的身高情况,从中抽取40名学生进行测量,下列说法正确的是( )答案:d

a.总体是240b.个体c.样本是40名学生d.样本容量是40

2.为了了解所加工一批零件的长度,抽测了其中200个零件的长度,在这个问题中,200个零件的长度是答案:c

a.总体b.个体c.总体的一个样本d.样本容量。

3.一个总体中共有200个个体,用简单随机抽样的方法从中抽取一个容量为20的样本,则某一特定个体被抽到的可能性是___答案:

课堂小结。1.简单随机抽样是一种最简单、最基本的抽样方法,简单随机抽样有两种选取个体的方法:放回和不放回,我们在抽样调查中用的是不放回抽样,常用的简单随机抽样方法有抽签法和随机数法.

2.简单随机抽样每个个体入样的可能性都相等,均为,但是这里一定要将每个个体入样的可能性、第n次每个个体入样的可能性、特定的个体在第n次被抽到的可能性这三种情况区分开来,避免在解题**现错误.

课堂练习:自学。

课堂作业:为了检验某种产品的质量,决定从40件产品中抽取10件进行检查,如何用简单随机抽样抽取样本?

解:方法一(抽签法):①将这40件产品编号为1,2,…,40;②做好大小、形状相同的号签,分别写上这40个号码;③将这些号签放在一个不透明的容器内,搅拌均匀;④连续抽取10个号签;⑤然后对这10个号签对应的产品检验.

必修3第二章统计

第二章统计。必备知识 三种抽样方法 理解特征数的意义,掌握特征数的求法 看图 表 说话 求回归直线方程。统计学是一门研究如何收集 整理 计算和分析数据并做出推断的一门学科。本章就是紧紧围绕统计学的这一定义加以展开的。以下是本章的知识结构图 2.1随机抽样。1 请同学们通过下列这张表,了解三种抽样方法...

必修3第二章统计

a 84,4.84 b 84,1.6 c 85,4 d 85,1.6 7.若一棉农分别种两种不同品种的棉花,连续五年的亩产量 单位 千克 亩 如下表 则平均产量较高与产量较稳定的分别是 a 品种甲,品种甲 b 品种甲,品种乙 c 品种乙,品种甲 d 品种乙,品种乙。8.已知两组样本数据的平均数为h,...

《必修3》第二章 统计B

3 用随机数表法从名学生 男生人 中抽取人进行评教,某男生被抽取的机率是 4 一个容量为的样本数据,分组后组距与频数如下表 则样本在区间上的频率为。5 某单位有老年人人,中年人人,青年人人,为调查身体健康状况,需要从中抽取一个容量为的样本,用分层抽样方法应分别从老年人 中年人 青年人中各抽取 人 人...