1. lagrange插值。
函数:function v=polyinterp(x,y,u)n=length(x);
v=zeros(size(u));
for k=1:n
w=ones(size(u));
for j=[1:k-1 k+1:n]
w=(u-x(j)).x(k)-x(j)).w;
endv=v+w*y(k);
end然后在窗口下输入x的取值,和多项式p,得出y值后,输入命令。
ymx=sym('x')
q=polyinterp(x,y,symx)pretty(q)
即可得到插值多项式的拉格朗日形式。
2. 分段线性插值程序。
function v = piecelin(x,y,u)delta = diff(y)./diff(x);
n = length(x);
k = ones(size(u));
for j = 2:n-1
k(x(j)
ends = u - x(k);
v = y(k) +s.*delta(k);
然后在窗口下输入x的取值,和 y取值后,输入。
u的取值。v= piecelin(x,y,u)plot(x,y,'o',u,v,'-
3.4题:在命令窗口输入。
figure('position',get(0,'screensize'))
axes('position',[0 0 1 1])x,y]=ginput;
把手放在电脑上画点,保存后,输入。
n = length(x);
s = 1:n)';
t = 1:.05:n)';
u =splinetx (s,x,t);
v = splinetx (s,y,t);
plot(x,y,'.u,v,'-
根据程序画出的我的手。
书上的手也是根据splinetx函数画出来的。
3.9题:a) for what x does pn(x) →f(x) as n →∞
当n=1时,进行插值运算,程序:
x=[-1:0.01:1];
y=1./(1+25*x.^2);
plot(x,y)
axis([-1.1 1.1 -0.1 1.1])hold on
x=0;y=1./(1+25*x.^2);
u =[1:0.01:1];
v=polyinterp(x,y,u);
plot(u,v,'r')
得出:当n增加,在原来的程序中继续加程序。
程序。hold on
for n=1:2:10
x = 1 + 2*(0:n-1)/(n-1);
y=1./(1+25*x.^2);
u =[1:0.01:1];
v=polyinterp(x,y,u);
plot(u,v,'r')
end可得图。
这是n=1,3,5,7,9时的情况。
当n趋于无穷时,让n=100;
程序:x=[-1:0.01:1];
y=1./(1+25*x.^2);
plot(x,y)
axis([-1.1 1.1 -0.1 1.1])hold on
n=101;
x = 1 + 2*(0:n-1)/(n-1);
y=1./(1+25*x.^2);
u =[1:0.01:1];
v=polyinterp(x,y,u);
plot(u,v,'r')
可以看出在0附近已经和原图一样了。
所以x=[-0.65 0.65]
b) x 取不同的值。
当x取随机的10个点时,程序:
x=[-1:0.01:1];
y=1./(1+25*x.^2);
plot(x,y)
axis([-1.1 1.1 -0.1 1.1])hold on
x=[ rand(1,5), rand(1,5)]y=1./(1+25*x.^2);
u =[1:0.01:1];
v=polyinterp(x,y,u);
plot(u,v,'r')
此时x =columns 1 through 9column 10
图为。当n=100时,程序为:
x=[-1:0.01:1];
y=1./(1+25*x.^2);
plot(x,y)
axis([-1.1 1.1 -0.1 1.1])hold on
x=[ rand(1,50), rand(1,50)]y=1./(1+25*x.^2);
u =[1:0.01:1];
v=polyinterp(x,y,u);
plot(u,v,'r')
我认为随机的拟合程度更高,重复区间更大。
解:(a)t = 1900:10:2000v = vander(t)
输出结果:t =
columns 1 through 6
columns 7 through 11
v =1.0e+033 *
columns 1 through 7
columns 8 through 11
从数据中可以看出,第3列至第11列均为0,后续的计算无法进行。
b)这个复选框是问我们想要哪种的拟合。
c)根据多项式来看,p(s)的系数是 p(t)的系数的倍。
没有影响。t=1900:10:2000;
mu=mean(t);
sigma=std(t);
s=(t-mu)./sigmamu =
sigma =
s =columns 1 through 6columns 7 through 11
没有更好的取值了。
实验二作业调度实验
一。实验目的要求 用高级语言编写和调试一个或多个作业调度的模拟程序,以加深对作业调度算法的理解。二。实验要求 1 编写并调试一个单道处理系统的作业等待模拟程序。作业等待算法 分别采用先来先服务 fcfs 最短作业优先 sjf 响应比高者优先 hrn 的调度算法。对每种调度算法都要求打印每个作业开始运...
实验二作业调度实验
西北农林科技大学信息工程学院实习报告。课程操作系统学院信息工程专业年级软件151 学号 2015012893 姓名张鑫 周次第八周交报告时间 2017.5.5成绩 一。目的要求 用高级语言编写和调试一个或多个作业调度的模拟程序,以加深对作业调度算法的理解。二 实验内容 1 编写并调试一个单道处理系统...
数学实验作业
学院 理学院。班级 统计11 1 姓名 吴。学号 201111051026 实验1一 问题的提出。已知方程组,其中,定义为。通过迭代法求解方程组。1 选取不同的初始向量,和不同的方程组右端向量,给定迭代误差要求,用雅克比和高斯赛德尔迭代法计算,观察得到的迭代向量序列是否收敛?2 取定右端向量和初始向...