专题05 函数的应用

发布 2022-06-29 04:40:28 阅读 7183

专题50 函数的应用。

聚焦考点☆温习理解。

1.函数的应用主要涉及到经济决策、市场经济等方面的应用.

2.利用函数知识解应用题的一般步骤:

1)设定实际问题中的变量;

2)建立变量与变量之间的函数关系,如:一次函数,二次函数或其他复合而成的函数式;

3)确定自变量的取值范围,保证自变量具有实际意义;

4)利用函数的性质解决问题;

5)写出答案.

3.利用函数并与方程(组)、不等式(组)联系在一起解决实际生活中的利率、利润、租金、生产方案的设计问题.

名师点睛☆典例分类。

考点典例。一、一次函数相关应用题。

例1】 (2015.陕西省,第21题,7分)(本题满分7分)胡老师计划组织朋友暑假去革命圣地延安两日游,经了解,现有甲、乙两家旅行社比较合适,**均为每人640元,且提供的服务完全相同,针对组团两日游的游客,甲旅行社表示,每人都按八五折收费;乙旅行社表示,若人数不超过20人,每人都按九折收费,超过20人,则超出部分每人按七五折收费。假设组团参加甲、乙两家旅行社两日游的人数均为x人。

1)请分别写出甲、乙两家旅行社收取组团两日游的总费用y(元)与x(人)之间的函数。

关系式;2)若胡老师组团参加两日游的人数共有32人,请你通过计算,在甲、乙两家旅行社中,帮助胡老师选择收取总费用较少的一家。

答案】(1)甲旅行社:=.

乙旅行社:当时,=.

当x>20时,=.

2)胡老师选择乙旅行社。

解析】试题分析:(1)首先根据优惠方案:甲总费用y=人均**的0.85倍×人数;

乙总费用y=20个人九折的费用+超过的人数×**×打折率,列出y关于x的函数关系式,2)根据人数计算出甲乙两家的费用再比较大小,哪家小就选择哪家。

考点:一次函数的应用、分类思想的应用.

点睛】本题根据实际问题考查了一次函数的运用.解决本题的关键是根据题意正确列出两种方案的解析式,进而计算出临界点x的取值,再进一步讨论.

举一反三】2015·黑龙江哈尔滨)小明家、公交车站、学校在一条笔直的公路旁(小明家到这条公路的距离忽略不计)。一天,小明从家出发去上学,沿这条公路步行到公交车站恰好乘上一辆公交车,公交车沿这条路匀速行驶,小明下车时发现还有4分钟上课,于是他沿这条路跑步赶到学校(上、下车时间忽略不计),小明与家的距离s(单位:米)与他所用的时间t(单位:

分钟)之间的函数关系如图所示。已知小明从家出发7分钟时与家的距离为1200米,从上车到他到达学校共用10分钟。下列说法:

小明从家出发5分钟时乘上公交车 ②公交车的速度为400米/分钟。

小明下公交车后跑向学校的速度为100米/分钟 ④小明上课没有有迟到。

其中正确的个数是( )

a)1个 (b)2个 (c)3个 (d)4个。

答案】d考点:一次函数的实际应用。

考点典例。二、反比例函数相关应用题。

例2】某地计划用120~180天(含120与180天)的时间建设一项水利工程,工程需要运送的土石方总量为360万立方米.

1)写出运输公司完成任务所需的时间y(单位:天)与平均每天的工作量x(单位:万立方米)之间的函数关系式,并给出自变量x的取值范围;

2)由于工程进度的需要,实际平均每天运送土石方比原计划多5000立方米,工期比原计划减少了24天,原计划和实际平均每天运送土石方各是多少万立方米?

答案】(1)y=(2≤x≤3);(2)原计划每天运送2.5万米3,实际每天运送3万米3.

解析】试题分析:(1)利用“每天的工作量×天数=土方总量”可以得到两个变量之间的函数关系;

2)根据“工期比原计划减少了24天”找到等量关系并列出方程求解即可;

试题解析:(1)由题意得,y=

把y=120代入y=,得x=3

把y=180代入y=,得x=2,自变量的取值范围为:2≤x≤3,y=(2≤x≤3);

2)设原计划平均每天运送土石方x万米3,则实际平均每天运送土石方(x+0.5)万米3,根据题意得:

解得:x=2.5或x=-3

经检验x=2.5或x=-3均为原方程的根,但x=-3不符合题意,故舍去,答:原计划每天运送2.5万米3,实际每天运送3万米3.

考点:反比例函数的应用;分式方程的应用.

点睛】本题考查了反比例函数的应用及分式方程的应用,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.

举一反三】甲、乙两家商场进行**活动,甲商场采用“满200减100”的**方式,即购买商品的总金额满200元但不足400元,少付100元;满400元但不足600元,少付200元;……乙商场按顾客购买商品的总金额打6折**.

1)若顾客在甲商场购买了510元的商品,付款时应付多少元钱?

2)若顾客在甲商场购买商品的总金额为x(400≤x<600)元,优惠后得到商家的优惠率为p(p=),写出p与x之间的函数关系式,并说明p随x的变化情况;

3)品牌、质量、规格等都相同的某种商品,在甲乙两商场的标价都是x(200≤x<400)元,你认为选择哪家商场购买商品花钱较少?请说明理由.

答案】(1)顾客在甲商场购买了510元的商品,付款时应付310元.(2)p与x之间的函数关系式为p=,p随x的增大而减小;(3)250<x<400,乙商场花钱较少,200≤x<250,甲商场花钱较少,x=250,两家商场花钱一样多.

解析】试题分析:(1)根据题意直接列出算式510-200即可;

2)根据商家的优惠率即可列出p与x之间的函数关系式,并能得出p随x的变化情况;

3)先设购买商品的总金额为x元,(200≤x<400),得出甲商场需花x-100元,乙商场需花0.6x元,然后分三种情况列出不等式和方程即可。

考点:反比例函数的应用.

点睛】此题考查了反比例函数的应用,用到的知识点是反比例函数的性质,一元一次不等式等,关键是根据题意求出函数的解析式.

考点典例。三、二次函数相关应用题。

例3】(2015.山东青岛第22题,10分)(本小题满分10分)

如图隧道的截面由抛物线和长方形构成,长方形的长是12m,宽是4m.按照图中所示的直角坐标系,抛物线可以用表示,且抛物线上的点c到ob的水平距离为3m,到地面oa的距离为m。

1)求抛物线的函数关系式,并计算出拱顶d到地面oa的距离;

2)一辆货运汽车载一长方体集装箱后高为6m,宽为4m,如果隧道内设双向车道,那么这辆货车能否安全通过?

3)在抛物线型拱璧上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m,那么两排灯的水平距离最小是多少米?

答案】,拱顶d到地面oa的距离为10米;可以通过;4

解析】试题分析:根据点b和点c在函数图象上,利用待定系数法求出b和c的值,从而得出函数解析式,根据解析式求出顶点坐标,得出最大值;根据题意得出车最外侧与地面oa的交点为(2,0)(或(10,0)),然后求出当x=2或x=10时y的值,与6进行比较大小,比6大就可以通过,比6小就不能通过;将y=8代入函数,得出x的值,然后进行做差得出最小值。

考点:二次函数的实际应用。

点睛】根据图形特点,建立恰当的平面直角坐标系,将实际问题转化为数学问题.建立平面直角坐标系时,要尽量将图形放置于特殊位置,这样便于解题.

举一反三】2015.安徽省,第22题,12分)为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80m的围网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设bc的长度为xm,矩形区域abcd的面积为ym2.

1)求y与x之间的函数关系式,并注明自变量x的取值范围;

2)x为何值时,y有最大值?最大值是多少?

答案】(1)(0<x<40);(2)当x=20时,y有最大值,最大值是300平方米。

解析】试题分析:(1)设ae=a,由ae·ad=2be·bc,ad=bc可得be=a,ab=a;根据周长为80米得方程2x+3a+2·a=80,解得a=20—x.由y=ab·bc代入即可求y与x之间的函数关系式;根据题意0<bc+ef< 80,所以x的取值范围为0<x<40;(2)把y与x之间的函数关系式化为顶点式,利用二次函数的性质即可求解。

考点:二次函数的应用及性质。

课时作业☆能力提升。

1.(2015.山东临沂第10题,3分)已知甲、乙两地相距20千米,汽车从甲地匀速行驶到乙地,则汽车行驶时间t(单位:

小时)关于行驶速度v(单位:千米/小时)的函数关系式是( )

abcd) .

答案】b解析】

试题分析:根据行程问题的公式路程=速度×时间,可知汽车行驶的时间t关于行驶速度v的函数关系式为t=.

考点:函数关系式。

5.(2015.山东莱芜第12题,3分)在一次自行车越野赛中,甲乙两名选手行驶的路程y(千米)随时间x(分)变化的图象(全程)如图,根据图象判定下列结论不正确的是( )

a.甲先到达终点。

b.前30分钟,甲在乙的前面。

c.第48分钟时,两人第一次相遇。

d.这次比赛的全程是28千米。

答案】d解析】

试题分析:根据函数的图像,找到相关信息,然后可判断。

a、由横坐标看,甲用时86分,乙用时96分,甲先到达终点,说法正确;

b、由横坐标看,在30分钟以前,说明用相同的时间,甲走的路程多于乙的路程,那么甲在乙的前面,说法正确;

c、由图象上两点(30,10),(66,14)可得线段ab的解析式为y=x+,那么由图象可得路程为12时,出现交点,当y=12时,x=48,说法正确;

d、乙是匀速运动,速度为:12÷48=,那么全程为×96=24千米,说法错误。

故选d考点:函数的图像的应用。

3.(2015·湖北鄂州,9题,3分)甲、乙两车从a城出发匀速行驶至b城.在整个行驶过程中,甲、乙两车离开a城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论: ①a,b两城相距300千米; ②乙车比甲车晚出发1小时,却早到1小时; ③乙车出发后2.

5小时追上甲车; ④当甲、乙两车相距50千米时,t =或.其中正确的结论有( )

a.1个b.2个 c.3个 d.4个。

答案】c.解析】

试题分析:由图象可知,a,b两城相距300千米, 判断①正确;乙车比甲车晚出发1小时,却早到1小时,判断②正确;先求出每段函数的解析式,再求出交点坐标即可判断③正确与否;列方程求解即可。

试题解析:由图象可知,a,b两城相距300千米, 判断①正确;

05函数的应用

11 定义在上的函数满足下列两个条件 1 对任意的,恒有成立 2 当时,设函数恰有三个零点,则实数的取值范围是。a b c d 11 解题 本题主要考查函数零点的有关知识,考查数形结合思想与分类讨论思想 解决此类问题的关键是熟悉求函数解析式的方法以及函数的图象与函数的性质 解析 c 因为对任意的,恒...

05函数的图像

编者 吴珍全。知识要点 1.作图的一般方法是 描点法 图像变换法。2.图像变换。1 平移变换 3.作函数图像的一般步骤是 课前预习 1.要得到的图像,只需作关于 轴对称的图像,再向 平移3个单位而得到 2.设是的图像的一条对称轴,那么的图像关于 对称 3.函数的图像的对称中心是,则实数 4.将函数的...

05限制函数 转换函数

极限函数 abs返回的值是数字的绝对值。整数或浮点的绝对值是没有正负数之分的数字。矢量的绝对值是不带负号的矢量元素。例如 abs 1 返回值为1。abs 1 返回值为1。abs 1,2.43,555 返回值是 1,2.43,555 abs 若 为 20,那么返回值是20 ceil 返回的值是一个经过...