2024年文科数学全国卷1试卷分析

发布 2022-03-27 13:44:28 阅读 3457

2024年数学新课标全国卷1试卷文科试题分析。

试题特点:高考数学题遵循了往年全国卷命题原则,如多数试题均以学生最熟悉的知识和问题呈现,只要对所涉及的知识和方法有基本的认知就可正确作答,这类试题有利于稳定考生的心态,有利于考生正常发挥。

试题注重对高中所学内容的全面考查,如集合、复数、函数、数列、线性规划、平面向量、计数原理、极坐标与参数方程、不等式等内容都得到了有效的考查。在此基础上,试卷还强调对主干内容的重点考查,如在解答题中考查了函数与导数、解三角形、概率统计、立体几何、圆锥曲线等主干内容,这体现了试卷对数学知识考查的基础性、全面性和综合性。

考题难度适中,选择题填空题压轴题难度降低,中间部分选择题和填空题难度也比较适中,压轴大题的形式依然很常规,导数难度中上。

2018 年高考数学命题严格依据考试大纲,聚焦学科主干内容,突出关键能力的考查,强调逻辑推理等理性思维能力,重视数学应用,关注创新意识,渗透数学文化。试题体现考主干、考能力、考素养,重思维、重应用、重创新的指导思想。试卷稳中求新,在保持结构总体稳定的基础上,科学灵活地确定试题的内容和顺序;合理调控整体难度,并根据文理科考生数学素养的综合要求,调整文理科同题比例,为新一轮高考数学不分文理科的改革进行了积极的探索;贯彻高考内容改革的要求,将高考内容和素质教育要求有机结合,把促进学生健康成长成才和综合素质提高作为命题的出发点和落脚点,强化素养导向,助推素质教育发展。

一、聚焦主干内容,突出关键能力。

2018 年高考数学试题,立足于培育学生支撑终身发展和适应时代要求的能力,重点考查学生独立思考、逻辑推理、数学应用、数学阅读和表达等关键能力;

重视学科主干知识,将其作为考查重点,围绕主干内容加强对基本概念、基本思想方法和关键能力的考查,基础性与中档性题目各约占整卷的40%,重点考查考生对数学本质的认识,考查考生对数学思想方法的理解和运用,多考一点想的,少考一点算的,杜绝偏题、怪题和繁难试题,以此引导中学教学遵循教育规律、回归课堂,用好教材,避免超纲学、超量学。

二、理论联系实际,强调数学应用。

2018 年高考数学试题,与国家经济社会发展、科学技术进步、生产生活实际紧密联系起来,通过设置真实的问题情境,考查考生灵活运用所学知识分析解决实际问题的能力。

在应用题中,将数据准备阶段的步骤减少,给考生呈现比较规范的数据格式或数据的回归模型;采取"重心后移"的策略,把考查的重点后移到对数据的分析、理解、找规律,减少繁杂的运算,突出对数学思想方法的理解和运用能力的考查;引导学生从"解题"到"解决问题"能力的培养。

试题贴近生产生活实际,体现数学应用价值。如第3题以新农村建设为背景,试题情境丰富,贴近生活,具有浓厚的时代气息,设计的问题自然却不乏新颖;再如第20题以产品质量检查为背景,设计的问题有很强的现实意义,减少了繁琐的数据整理步骤,将考查重点放在运用概率统计思想方法分析和解释数据之上,不仅考查考生对概率统计知识的理解,更是考查概率统计知识在数学和生活中的应用。

该题型越来越趋于于考察学生生活理解能力,侧重于让数学回归于生活突出了考查重点。

三、考查数学思维,关注创新意识。

2018 年高考数学试题,体现鲜明的创新导向,创新试题的呈现方式和设问方式,让学生从不同角度认识问题, 鼓励学生主动思考、发散思维,激发学生的想象力和思想的张力,把学生从标准答案中解放出来;增强试题的灵活性和开放性,采取多样的形式、多角度的提问、不唯一的答案,降低题海战术、机械刷题的收益,从而起到减负的作用;真实地考查考生的数学能力,而不是训练技巧,引导基础教育扎实推进素质教育。

如文科数学全国 i 卷第 17 题在所求数列中加入了讨论,通过层层递进、逐步深入的设问展现了思维的过程,充满了**的味道,体现了新课标研究型学习的理念。第20题将函数与概率综合,设问新颖,体现了考生运用数学知识解决数学问题的能力和素养。

四、增强文化浸润,体现育人导向。

独特的历史和文化是我们民族的根,也是立德树人、繁衍发展的文化基因,蕴含强大感召力的文化积淀。

2018 年高考数学试题把其中的精华引入到考试内容中,既打上中华文化的烙印,又有东方数学的特点,发挥春风化雨、润物无声的作用;在弘扬中国传统文化的同时,注意吸收世界数学文化的精华,引导学生胸怀祖国,放眼世界。

五、探索内容改革,助推素质教育。

根据文、理科考生数学素养的综合要求,对于文理科同题比例有做出调整,为新一轮高考数学不分文理科的改革进行了积极的探索。

试题采用"y 字型排列":即文理科容易题和中档题相同,构成试卷的基础, 其后文科增加中档题,理科增加较难题,组成文理科不同难度结构的试卷。

通过这样先合后分的设计达到"一石三鸟"的目的:一是增加文理科共同题的比例,二是提高文科试卷的得分率,三是增强理科试卷的区分效果。

六、全卷试题分析。

1、小题。1)复数基础题。

去年全国卷在复数的考查上近考查了乘法运算与复数概念,但是今年全国卷考查四则运算以及模的定义,计算量稍有增加。

2)立体几何的题。

同样的情况出现在立体几何的命题中,今年立体几何要求考生对空间关系理解透彻,但是删去了技巧较高的外界球问题,回归空间关系的本质:

去年考查的是较为简单线面关系,而今年需要考生理解线面夹脚的含义,并用与计算棱长与体积,需要考试全面掌握立体几何的知识。

3)概率统计题。

对数据分析提出要求,今年创新性地加入了相关类型的题目,也符合未来“培养全面的能够应用数学分析实际问题的人才”的要求,与高校的人才选拔要求一致。而这类题型其实也有相似的练习,方式相近,故只需平常心对待即可。

4)函数与导数题

函数与圆锥曲线环节,明显降低要求,主要表现在:取消了过往函数的图像判断问题,降低对导数知识点的要求,回归基础。

去年函数与导数的问题混合了函数性质、对数运算、函数图像三个大难点,而今年题目则十分明了,考查函数的基本性质与简单的切线计算,属于数学的基本方法与基本经验。

5)圆锥曲线题

圆锥曲线小题今年考的是直线被圆截得的弦长,是高一学习的内容,也是最基本的解题方法。放在第15题,考查的点要广,而且贴合课本。未来的考生在复习时也要覆盖早期学习的内容。

2、解答题

今年解答题整体水平与往年相当,统计概率问题改为大家都熟悉的频率分布直方图及估计;抛物线已经连续三年考查直线与抛物线相关问题,方法都十分接近。导数计算量下降,可用条件比往年多。

值得关注的是,今年数列问题考察了三个小问,但得分不难,只需细心计算即可。而几何问题相对来说区分度较高。考查折起问题,需要考生具有挖掘隐藏信息的能力,属于核心素养的能力。

注重对知识点内核的学习。

2024年新课标全国卷1文科数学分类汇编 4 平面向量

2011年 2018年新课标全国卷 文科数学分类汇编。一 选择题。2018 新课标 文7 在中,为边上的中线,为的中点,则 a b c d 2015,2 2 已知点a 0,1 b 3,2 向量,则向量 a 7,4 b 7,4 c 1,4 d 1,4 2014,6 设d,e,f分别为 abc的三边bc...

近三年文科数学全国卷 数列

数列考点问题 小题1 结合算法,根据所给数列公式,作指定次数或条件迭代或循环运算并求值 小题2 根据某几项的和,求其他几项的和,某通项公式或项数 小题3 由所给递推关系式求通项公式 项 和 解答题 根据等差 等比 数列的定义,公式,性质,并将已知的递推关系式变形,求有关数列的通项公式,项,和等有关问...

2024年新课标全国卷2文科数学试题分类汇编 2 复数

2011 2019年新课标全国卷2文科数学试题分类汇编。2 复数。一 选择题。2019 全国卷 文2 设,则 a bc d abcd abc.d.2016 2 设复数z满足,则 a b c d 2015 2 若为实数,且,则 a.4b.3c.3d.4 a 1 2ib 1 2i c 1 2id 1 2...