二年级组。课程标准从基本理念、课程目标、核心概念、课程内容、实施建议等方面进行了修订。今天主要从以下几个方面:。
第一,积累好的案例。
第二,认真地研究学生。学生在面对一个问题时他们是如何思考的,其中是否存在着经验。
第三,探索经验形成的途径。一般说来,要经历:“经历、内化、概括、迁移”的过程。
首先,需要经历,无论是生活中的经历、还是学习活动中的经历,对于学生基本经验的积累是必须的。但仅仅是经历是不够的,还需要学生在活动中充分调动数学思维,将活动所得不断内化和概括,最终迁移到其他的活动和学习中。由此可见,数学活动经验既是数学学习的产物,也是学生进一步认识和实践的基础。
这里反思和迁移是重要的。比如,我在国外教材中看到过这样的问题:”今天你学习的方法在以前**用过?
今后可能用到什么地方“。这样的问题就是在帮助学生实现迁移。
下面,谈谈基本思想。
在课程标准解读中,提出了三个基本思想:抽象、推理、模型。人们通过抽象,从客观世界中得到数学的概念和法则,建立了数学学科;通过推理,进一步得到更多的结论,促进数学内部的发展;
通过建模,把数学应用到客观世界中,沟通了数学与外部世界的桥梁。比如,由数量抽象到数,由数量关系抽象到方程、函数(如正反比例)等;通过推理计算可以求解方程;有了方程等模型,就可以把数学应用到客观世界中。
笔者认为基本思想这一层面是数学思想的最高层面。处于下一层次的还有与具体内容紧密结合的具体思想,如数形结合思想、化归思想、分类思想、方程思想、函数思想等。在数学思想之下统领的还有一些具体的方法。
对于教师,我认为首先对数学基本思想要熟悉,心里有这根弦。作为研究,可以研究与具体内容紧密结合的具体思想,如数形结合思想、函数思想等。限于篇幅和时间,这里不好列举大的案例。
感兴趣的老师,我最近要在东北师范大学出版社出版一本对于课程标准的解读,上面有比较丰富的一线老师们的案例。
第一,启发学生思考的最好的办法是教师与学生一起思考。教师要能暴露自己的思考路径,教学中为什么要提出这些问题供大家思考,遇到情境可以从哪些方面提出问题,遇到这些问题后应该从哪些角度来分析,解决了这个问题又可以提出哪些新的问题。
第二,要鼓励学生”从头到尾“的思考问题。这句话是史宁中教授的,我觉得很形象。比如,小学中也有很多例子,比如圆的周长与直径的关系,教师一上来就让学生去测量,然后用周长去除以直径。
学生就没有“从头思考”,为什么要用周长去除以直径?这时候,教师可以引导学生思考:圆的周长的大小与什么有关,学生能可以到与直径或半径有关,因为直径等于2个半径,所以可以只研究周长与直径的关系。
那么有什么关系呢?教师可以鼓励学生类比正方形,正方形的周长等于边长的4倍,那么圆的周长是否也和直径存在着倍数关系呢,不妨测量以后相除看一看。这个例子,我昨天在家里和我的儿子试了试,他是完全可以接受的。
进一步,我又鼓励他思考,接着要想什么。他说,要想为什么我测了以后不是3倍多,为什么数学家就能得到这么准确的值。还可以问,为什么是3倍多而不是2倍多。
多么可爱的孩子。
时间的关系,下面我们进入到核心概念的讨论。
标准》指出:“在数学课程中,应当注重发展学生的数感、符号意识、空间观念、几何直观、数据分析观念、运算能力、推理能力和模型思想。
核心概念反应了一类课程内容的核心,是学生数学学习的目标,也是数学教学中的关键。与《实验稿》相比,在这10个核心概念中,有一些是新增加的:运算能力、模型思想、几何直观、创新意识;有一些是名称或内涵发生较大变化的:
数感、符号意识、数据分析观念;有一些是保持了原有名称,基本保持了原有内涵:空间观念、推理能力、应用意识。
进一步,这10个核心概念可以分成三层。
第一层,主要体现在某一内容领域的核心概念。数感、符号意识、运算能力主要体现在数与代数领域,空间观念主要体现在图形与几何领域,数据分析观念主要体现在统计与概率领域;
第二层,体现在不同内容领域的核心概念,包括几何直观、推理能力和模型思想;
第三层,超越课程内容,整个小学数学课程都应特别注重培养学生的应用意识和创新意识。
1.数感。数与数量,实际上就是建立起抽象的数和现实中的数量之间的关系。
这既包括从数量到数的抽象过程中,对于数量之间共性的感悟;也包括在实际背景中提到一个数时,能将其与现实背景中的数量联系起来,并判断其是否合理。比如,曾经有一个例子,一位学生看见某一博物馆的介绍资料中提到“7000平方米森林中生活着两只东北虎”时,发现了其不合理处,原来应该是“7000平方千米森林中生活着两只东北虎”。数量之间的关系包括数的大小关系及其所对应的数量之间的多少关系,也包括变化的量之间的函数关系等。
比如,学生在观察两个变量之间对应的数据时,能够对于它们之间可能存在的关系进行初步的判断。有关估算,***还要谈到,这里不赘述了。由上面对于数感的理解不难看出,发展学生的数感,需要创设情境建立起抽象的数和现实中的数量之间的关系;需要学生对于单位数量(比如1平方米)有比较准确的把握;需要能从多种角度来表示一个数,比如,0.
25就是1/4;还需要对数之间的大小关系有所感悟,比如0.49比1/2小但很接近,1.3介于1和1.
5之间。
2.运算能力。
如前所述,运算能力是《标准》新增加的核心概念。《标准》指出:“运算能力主要是指能够根据法则和运算律正确地进行运算的能力。
培养运算能力有助于学生理解运算的算理,寻求合理简洁的运算途径解决问题”。从上面的表述中不难看出,运算能力首先是会算和算正确;而会算不是死记硬背,要理解运算的道理,还要寻求合理简洁的运算途径解决问题等。
3.符号意识。
首先,《标准》将“符号感”更名为“符号意识”,更加强调学生主动理解和运用符号的心理倾向。符号意识主要是指能够理解并且运用符号表示数、
数量关系和变化规律。这一条强调了符号表示的作用。知道使用符号可以进行运算和推理,得到的结论具有一般性。
这一条,强调了“符号”的一般性特征。因为用数进行的所有运算都是个案,而数学要研究一般问题,一般问题需要通过符号来表示、运算和推理。因此一方面符号可以像数一样进行运算和推理,另外通过符号运算和推理得到的结论是具有一般性的。
4.空间观念。
除了将《实验稿》中最后一条独立为另一个核心概念“几何直观”外,《标准》对于“空间观念”的阐述基本保持了原来的说法。
5.几何直观。
几何直观是《标准》中新增的核心概念,主要是指“利用图形描述和分析问题。借助几何直观可以把复杂的数学问题变得简明、形象,有助于探索解决问题的思路,**结果。几何直观可以帮助学生直观地理解数学,在整个数学学习过程中都发挥着重要作用”。
6.数据分析观念。
标准》将“统计观念”更名为“数据分析观念”,点明了统计的核心是数据分析。进一步,“数据分析观念”更加突出了统计与概率独特的思维方法:体会数据中蕴涵着信息;根据问题的背景选择合适的方法;通过数据分析体验随机性。
7.推理能力。
标准》和《实验稿》一样,强调了“获得数学猜想——证明猜想”的全过程,以及在这个过程中的合情推理和演绎推理。需要特别指出的是,推理能力的发展应贯穿于整个数学学习过程中。在解决问题的过程中,两种推理功能不同,相辅相成:
合情推理用于探索思路,发现结论;演绎推理用于证明结论。
新课标解读
普通高中新课标物理学科解读。物理 内容增多课时减少 湖大附中物理教研组长 高级教师吴谦。课标特点。物理新课标有以下几个新特点。1.物理课的总课时比原来的课时减少大约三分之一。新大纲是按新的课程计划制定的。新的全日制普通高级中学课程计划规定,高一物理,全体学生学习相同的内容,每周2课时。从高二起,学生...
新课标解读
1 了解当今世界发展趋势,知道我国在世界格局中的地位 作用和面临的机遇与挑战,认识我国对外开放的基本国家策的必要性与作用,增强忧患意识。2 了解我国在科技 教育发展方面的成就,知道与发达国家的差距,理解实施科教兴国战略的现实意义,感受科技创新 教育创新的必要性,努力提高自身素质。3 知道我国的人口 ...
新课标解读
新标准在学生课外阅读总量上虽然没有变化,但是在具体的操作上有了更加明确的要求和建议。在原标准的基础上提出要重视提高学生的阅读品位,关注学生通过多种媒介的阅读,鼓励学生自主选择优秀的阅读材料。课外阅读 喜欢分享。2011版新课标强调了对学生课外阅读的指导。哈尔滨市阿城区玉泉中心小学常伟。新标准在学生课...