高考复习数学公式大全

发布 2022-01-11 03:25:28 阅读 1578

高考复习资料数学公式大全。

为大家整理了有关几何体部分的所有高考必考公式大全进行了汇总,方便大家查阅记忆。长方形a和b-边长c=2(a+b) s=ab

三角形a,b,c-三边长h-a边上的高s-周长的一半a,b,c-内角。

其中s=(a+b+c)/2 s=ah/2 =ab/2?sinc=1/2 =a2sinbsinc/(2sina)圆锥的体积=底面积高÷3

长方体(正方体、圆柱体)的体积=底面积高平面图形名称符号周长c和面积s正方形a—边长c=4as=a2长方形a和b-边长c=2(a+b) s=ab

三角形a,b,c-三边长h-a边上的高s-周长的一半a,b,c-内角。

其中s=(a+b+c)/2 s=ah/2 =ab/2?sinc=1/2 =a2sinbsinc/(2sina)1过两点有且只有一条直线2两点之间线段最短3同角或等角的补角相等4同角或等角的余角相等。

5过一点有且只有一条直线和已知直线垂直。

6直线外一点与直线上各点连接的所有线段中,垂线段。

最短。7平行公理经过直线外一点,有且只有一条直线与这条直线平行8如果两条直线都和第三条直线平行,这两条直线也互相平行9同位角相等,两直线平行10内错角相等,两直线平行11同旁内角互补,两直线平行12两直线平行,同位角相等13两直线平行,内错角相等14两直线平行,同旁内角互补。

15定理三角形两边的和大于第三边16推论三角形两边的差小于第三边。

17三角形内角和定理三角形三个内角的和等于180°18推论1直角三角形的两个锐角互余。

对应角相等22边角边公理(sas)有两边和它们的夹角对应相等的两个三角形全等23角边角公理( asa)有两角和它们的夹边对应相等的两个三角形全等24推论(aas)有两角和其中一角的对边对应相等的两个三角形全等25边边边公理(sss)有三边对应相等的两个三角形全等。

26斜边、直角边公理(hl)有斜边和一条直角边对应相等的两个直角三角形全等27定理1在角的平分线上的点到这个角的两边的距离相等。

28定理2到一个角的两边的距离相同的点,在这个角的平分线上29角的平分线是到角的两边距离相等的所有点的集合。

30等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角) 31推论1等腰三角形顶角的平分线平分底边并且垂直于底边。

32等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33推论3等边三角形的各角都相等,并且每一个角都等于60°

34等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35推论1三个角都相等的三角形是等边三角形36推论2有一个角等于60°的等腰三角形是等边三角形。

37在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38直角三角形斜边上的中线等于斜边上的一半。

39定理线段垂直平分线上的点和这条线段两个端点的距离相等。

40逆定理和一条线段两个端点距离相等的点,对称的两个图形是全等形。

43定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上。

45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。

46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2 47勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2,那么这个三角形是直角三角形。

48定理四边形的内角和等于360°49四边形的外角和等于360°

50多边形内角和定理n边形的内角的和等于(n-2)180°51推论任意多边的外角和等于360°

55平行四边形性质定理3平行四边形的对角线互相平分。

65菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即s=(ab)÷2 67菱形判定定理1四边都相等的四边形是菱形68菱形判定定理2对角线互相垂直的平行四边形是菱形。

69正方形性质定理1正方形的四个角都是直角,四条边都相等。

70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角。

71定理1关于中心对称的两个图形是全等的72定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。

74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等。

76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形。

78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79推论1经过梯形一腰的中点与底平行的直线,必平分另一腰。

80推论2经过三角形一边的中点与另一边平行的直线,必平分第三边81三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半l=(a+b)÷2s=lh

83 (1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d 84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d

85 (3)等比性质如果a/b=c/d==m/n(b+d++n≠0),那么(a+c++m)/(b+d++n)=a/b

86平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88定理如果一条直线截三角形的两边(或两边的延长。

线)所得的对应线段成比例,那么这条直线平行于三角形的第三边。

89平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91相似三角形判定定理1两角对应相等,两三角形相似(asa) 92直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93判定定理2两边对应成比例且夹角相等,两三角形相似(sas)94判定定理3三边对应成比例,两三角形相似(sss)

95定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96性质定理1相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97性质定理2相似三角形周长的比等于相似比。

98性质定理3相似三角形面积的比等于相似比的平方99任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值。

100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值。

101圆是定点的距离等于定长的点的集合。

105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线。

108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三点确定一个圆。

110垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧。

111推论1①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧。

平分弦所对的一条弧的直径,垂直平分弦,114定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等。

115推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的。

其余各组量都相等。

116定理一条弧所对的圆周角等于它所对的圆心角的一半。

117推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。

118推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径119推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形120定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角121①直线l和⊙o相交dr

126切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角127圆的外切四边形的两组对边的和相等。

128弦切角定理弦切角等于它所夹的弧对的圆周角129推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等130相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等131推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项132切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项133推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等。

134如果两个圆相切,那么切点一定在连心线上135①两圆外离d>r+r②两圆外切d=r+r③两圆相交r-rr)④两圆内切d=r-r(r>r)⑤两圆内含dr) 136定理相交两圆的连心线垂直平分两圆的公共弦137定理把圆分成n(n≥3):

依次连结各分点所得的多边形是这个圆的内接正n边形。

经过各分点作圆的切线,,这两个圆是同心圆139正n边形的每个内角都等于(n-2)180°/n

140定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形141正n边形的面积sn=pnrn/2p表示正n边形的周长142正三角形面积√3a/4 a表示边长143如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k(n-2)180°/n=360°化为(n-2)(k-2)=4 144弧长计算公式:l=nπr/180

145扇形面积公式:s扇形=nπr2/360=lr/2146内公切线长= d-(r-r)外公切线长= d-(r+r) 147等腰三角形的两个底脚相等。

148等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合149如果一个三角形的两个角相等,那么这两个角所对的边也相等150三条边都相等的三角形叫做等边三角形。

考研数学公式大全 考研必备

高等数学公式篇。平方关系 sin 2 cos 2 1 tan 2 1 sec 2 cot 2 1 csc 2 积的关系 sec tan csc csc sec cot 倒数关系 tan cot 1 sin csc 1 cos sec 1 直角三角形abc中,角a的正弦值就等于角a的对边比斜边,余弦等...

2019重庆小升初总复习数学公式大全

小升初数学总复习面广量大,时间紧迫,内容较多,任务艰巨,又极易引起两极分化。为了使温习课更贴近考试实践,能够用较少的时间到达较好的温习效果。现把小升初阶段数学重要学问点内容整理如下,供重庆小升初的考生们,希望大家在考试中获得好成绩!体积和表面积。三角形的面积 底 高 2。公式 s a h 2 正方形...

小升初数学公式

1 分类数图形。在解决分类数图形问题时,只有遵循不重不漏的原则,才能使数的结果正确无误。但如果一个一个的数,很容易出错。我们需要对数的方法进行分类,进而发现其中的规律,做到有秩序 有条理并且正确的数出图形的个数。一般来讲,如果一条线段被分成了段,则该图中共有线段个 一般来讲,如果一个三角形的一条边被...