9 2概率的综合题型

发布 2021-04-29 13:37:28 阅读 3835

【高考热点】

1. 有些概率题综合了多种概率题型,还可能与方程、不等式、数列等知识综合,虽然难度不大,但涉及的知识较多;

2. 注意解概率问题的规范表达。

课前预习】

1. (04全国理)从数字中,随机抽取3个数字(允许重复)组成一个三位数,其各位数字之和等于9的概率为。

abcd.

2. (04河南等)从1,2,…,9这九个数中,随机抽取3个不同的数,则这3个数的和为偶数的概率是 (

abcd.

3. (04辽宁卷)甲、乙两人独立地解同一问题,甲解决这个问题的概率是p1,乙解决这个问题的概率是 p2,那么恰好有1人解决这个问题的概率是。

a. b. c. d.

4. (04辽宁卷)口袋内装有10个相同的球,其中5个球标有数字0,5个球标有数字1,若从袋中摸出5个球,那么摸出的5个球所标数字之和小于2或大于3的概率是 .(以数值作答)

5. (04上海春)一次二期课改经验交流会打算交流试点学校的**5篇和非试点学校的**3篇。若任意排列交流次序,则最先和最后交流的**都为试点学校的概率是结果用分数表示).

6. 如图,a、b、c、d为海上的4个小岛,现可在任两个岛之间建一座桥,若只建其中的三座,则能把四个小岛连结起来的概率是。

典型例题】例1 (04湖南理)甲、乙、丙三台机床各自独立地加工同一种零件,已知甲机床加工的零件是一等品而乙机床加工的零件不是一等品的概率为,乙机床加工的零件是一等品而丙机床加工的零件不是一等品的概率为,甲、丙两台机床加工的零件都是一等品的概率为。

1)分别求甲、乙、丙三台机床各自加工零件是一等品的概率;

2)从甲、乙、丙加工的零件中各取一个检验,求至少有一个一等品的概率。

例2 如图,a、b两点之间有6条网线并联,它们能通过的最大信息量分别为1,1,2,2,3,4.现从中任取三条网线且使每条网线通过最大的信息量。 设选取的三条网线由a到b可通过的信息总量为x,当x≥6时,则保证信息畅通。

求线路信息畅通的概率。

例3 三个元件t1、t2、t3正常工作的概率分别为将它们中某两个元件并联后再和第三元件串联接入电路。

1)在如图的电路中,电路不发生故障的概率是多少?

2)三个元件连成怎样的电路,才能使电路中不发生故障的概率最大?请画出此时电路图,并说明理由。

本课小结】课后作业】

1. 某学生语、数、英三科考试成绩,在一次考试中排名全班第一的概率:语文为0.9,数学为0.

8,英语为0.85,问一次考试中:(1)三科成绩均未获得第一名的概率是多少?

(2)恰有一科成绩未获得第一名的概率是多少?

2. 甲、乙两人独立解某一道数学题,已知该题被甲独立解出的概率为0.6,被甲或乙解出的概率为0.92. (1)求该题被乙独立解出的概率;(2)求恰有一人解出该题的概率。

3. 有一批食品出厂前要进行五项指标检验,如果有两项指标不合格,则这批食品不能出厂.已知每项指标抽检是相互独立的,且每项抽检出现不合格的概率都是0.2.(1)求这批产品不能出厂的概率(保留三位有效数字);(2)求直至五项指标全部验完毕,才能确定该批食品是否出厂的概率(保留三位有效数字).

4. 高三(1)班、高三(2)班每班已选出3名学生组成代表队,进行乒乓球对抗赛。 比赛规则是:①按“单打、双打、单打”顺序进行三盘比赛;②代表队中每名队员至少参加一盘比赛,不得参加两盘单打比赛。

已知每盘比赛双方胜出的概率均为0.5. (根据比赛规则,高三(1)班代表队共可排出多少种不同的出场阵容?

(ⅱ高三(2)班代表队连胜两盘的概率是多少?

科学综合题型

13 四川成都 图27所示为小刚设计的滑轮组装置。其中滑块a置于表面粗糙程度各处相同的水平面上,动滑轮重g 10 n,重物b的重力gb可改变。右下表是小刚在某次使用该装置时记录的一些数据。若不计绳重及绳与滑轮间的摩擦,跨过滑轮的绳或竖直或水平,a距水平面上的定滑轮 b距水平面均足够远。求 1 在4 ...

数列综合题型

1.数列满足的前n项和。1 计算数列的前4项 2 猜想的表达式,并证明 3 求数列的前n项和。2.设数列为等差数列,且a5 14,a7 20。i 求数列的通项公式 ii 若。3.正项的等差数列中,数列是等比数列,且,则 4.在4月份 按30天计算 有一 服装投入某商场销售,4月1日该款服装仅销售出1...

分数综合题型

分式专题六 分数综合题型。一 填空题。1 当x时,分式值为0?2 要使式子 有意义,x的取值应为。3 当时,分式的值为零。4 若关于x的方程 1 0无实根,则a的值为 5 已知用x的代数式表示y为。6 若x 2,则x 7 已知。则分式的值为。8 若恒成立,则a b 二 选择题。1 在下列各式中,是分...