2.1 试求图各杆-3 截面上的轴力,并作轴力图。
解:(a) ,
b) ,c) ,
轴力图如题2. 1 图( a) 、b ) c) 所示。
2.2 作用于图示零件上的拉力f=38kn,试问零件内最大拉应力发生在哪个截面上? 并求其值。
解截面1-1 的面积为。
截面2-2 的面积为。
因为1-1截面和2-2 截面的轴力大小都为f,1-1截面面积比2-2 截面面积小,故最大拉应力在截面1-1上,其数值为:
2.9 冷镦机的曲柄滑块机构如图所示。镦压工件时连杆接近水平位置,承受的镦压力f=1100kn。
连杆截面是矩形截面,高度与宽度之比为。材料为45钢,许用应力,试确定截面尺寸h及b。
解连杆内的轴力等于镦压力f,所以连杆内正应力为。
根据强度条件,应有,将代入上式,解得。
由,得。所以,截面尺寸应为,。
2.12 在图示简易吊车中,bc为钢杆,ab为木杆。木杆ab的横截面面积,许用应力;钢杆bc的横截面面积,许用拉应力。试求许可吊重f。
解 b铰链的受力图如图(b)所示,平衡条件为。
解(1)、(2)式,得。
1) 按照钢杆的强度要求确定许可吊重。
钢杆的强度条件为:
由上式和(3)式可得。
2) 按木杆的强度要求确定许可吊重。
木杆的强度条件为:
由上式和(3)式可得。
比较上述求得的两种许可吊重值,可以确定吊车的许可吊重为。
2.14 某铣床工作台进给油缸如图(a)所示,缸内工作油压,油缸内径d= 75mm,活塞杆直径d=18mm。已知活塞杆材料的许用应力,试校核活塞杆的强度。
解活塞杆的受力图(b)所示,由平衡条件可得其承受的拉力为:
活塞杆的应力:
与许用应力比较可知,活塞杆可以安全工作。
2.18 变截面直杆的受力如图(a)所示。已知:,,求杆的总伸长。
解杆的轴力图如图(b)所示,各段的伸长分别为:
则总的伸长为。
2.20 设图(a)中cg 杆为刚体(即cg 杆的弯曲变形可以忽略),bc杆为铜杆,dg 杆为钢杆,两杆的横截面面积分别为和,弹性模量分别为和。如要求cg杆始终保持水平位置,试求。
解 cg杆的受力图如图(b)所示,其平衡条件为。
由拉压胡克定律得二杆的轴向变形为:,
欲使cg 杆始终保持水平状态,必须,即。
联立①、②式,解得:。
2.43 在图(a)所示结构中,假设ac梁为刚杆,杆的横截面面积相等,材料相同。试求三杆的轴力。
解杆abc的受力图如图(b)所示,平衡条件为:
变形的几何关系如图(b)所示,变形协调方程为。
利用胡克定律将③式变为。
联立①、②式,解得,
2.44 如图(a)所示刚杆ab悬挂于 两杆上,杆1的横截面面积为60,杆2为120,且两杆材料相同。若f=6kn,试求两杆的轴力及支座a的反力。
解杆的受力图如图(b)所示,这是个一次超静定问题,可利用的平衡方程只有一个。
变形协调方程为:
解①、②式,得,
由平衡条件:,
得:。2.58 图示凸缘联轴节传递的力偶矩为=200 n·m,凸缘之间用四只螺栓连接,螺栓内径,对称地分布在的圆周上。如螺栓的剪切许用应力,试校核螺栓的剪切强度。
解假设每只螺栓所承受的剪力相同,都为。四个螺栓所受剪力对联轴节轴线的力矩之和与联轴节所传递的力偶矩平衡,所以有:
因此,每只螺栓所承受的剪力为:
每只螺栓内的切应力为:
所以,螺栓能安全工作。
2.59 一螺栓将拉杆与厚为8mm的两块盖板相连接。各零件材料相同,许用应力为,,。若拉杆的厚度δ=15mm,拉力f=120 kn,试设计螺栓直径d及拉杆宽度b。
解 (1) 按拉伸强度要求设计拉杆的宽度。
拉杆的轴力,其强度条件为:
解上式,得。
(2) 按剪切强度要求设计螺栓的直径。
螺栓所承受的剪力为,应满足剪切强度条件为:
解上式,得。
3) 按挤压强度要求设计螺栓的直径。
拉杆挤压强度条件为:
解上式,得
盖板的挤压强度条件为:
解上式,得
比较以上三种结果,取d=50mm,b=100mm。
3.1 作图示各杆的扭矩图。
解图(a),分别沿-2 截面将杆截开,受力图如图(a1)所示。应用平衡条件可分别求得:
根据杆各段扭矩值,作出的扭矩图如图(a2)所示。
用同样的方法,可作题图(b)、(c)所示杆的扭矩图,如图(b1)、(c1)所示。
3.8 阶梯形圆轴直径分别为d1=40mm,d2=70mm,轴上装有三个皮带轮,如图(a)所示。已知由轮3输入的功率为p3=30kw,轮1输出的功率为p1=13kw,轴作匀速转动,转速n=200r/min,材料的剪切许用应力,g=80gpa,许用扭转角。
试校核轴的强度和刚度。
解首先作阶梯轴的扭矩图。
阶梯轴的扭矩图如图(b)所示。
1) 强度校核。
ac段最大切应力为:
ac段的最大工作切应力小于许用切应力,满足强度要求。
cd段的扭矩与ac段的相同,但其直径比ac段的大,所以cd段也满足强度要求。
db段上最大切应力为:
故db段的最大工作切应力小于许用切应力,满足强度要求。
2) 刚度校核。
ac段的最大单位长度扭转角为:
db段的单位长度扭转角为:
综上所述可知,各段均满足强度、刚度要求。
3.11 实心轴和空心轴通过牙嵌式离合器连接在一起。已知轴的转速n=100r/ min,传递的功率p=7.
5kw,材料的许用切应力=40mpa。试选择实心轴的直径d1和内外径比值为0.5的空心轴的外径d2。
解轴所传递的扭矩为。
由实心圆轴的强度条件。
可得实心圆轴的直径为:
空心圆轴的外径为:
3.13 桥式起重机如图所示。若传动轴传递的力偶矩me=1.08kn·m,材料的许用应力=40mpa,g=80gpa,同时规定。试设计轴的直径。
解由圆轴扭转的强度条件。
可确定轴的直径为:
由圆轴扭转的刚度条件。
可确定轴的直径为。
比较两个直径值,取轴的直径。
3.14 传动轴的转速n=500r/min,主动轮1输入功率p1=368kw,从动轮分别输出功率p2=147kw,p3=221kw。已知=70mpa,,g=80gpa。
1) 试确定ab段的直径和bc段的直径d2。
2) 若ab和bc两段选用同一直径,试确定直径d。
3) 主动轮和从动轮应如何安排才比较合理?
解首先计算外力偶矩。
应用以上外力偶矩数值,作轴的扭矩图如图(b)所示。
1) 确定ab段的直径和bc段的直径。
根据强度条件:
可确定轴ab段的直径为:
由刚度条件
可确定轴ab段的直径为:
比较由强度条件和刚度条件计算的ab段的直径值,取。
根据强度条件确定轴bc段的直径为:
根据刚度条件确定bc段的直径为:
比较由强度条件和刚度条件计算的ab段的直径值,取。
2) 若ab和bc段选用同一直径,则轴的直径取。
3) 主动轮放在两从动轮之间,可使最大扭矩取最小值,所以,这种安排较合理。
4.1 试求图(c)和(f)所示各梁中截面-3上的剪力和弯矩,这些截面无限接近于截面c或截面d。设f 、q、a 均为已知。
解 (c) 截面1-1内力为:
截面2-2内力为:
f) 截面1-1内力为:
由上式可得:
截面2-2内力为:
4.4 设图(a)、(d)、(h)、(j)和(l)所示各梁的载荷f、q、me和尺寸a。(1)列出梁的剪力方程和弯矩方程;(2)作剪力图和弯矩图;(3) 确定及。
解 (a) 受力如图(a)所示。
1) 列剪力方程和弯矩方程。
用假想截面截开,取右段进行研究可得剪力方程和弯矩方程:
2) 作剪力图、弯矩图。
如题图(a2)所示。
3) 梁的最大剪力和弯矩。
d) 受力如图(d) 所示。
1) 计算支反力和。
由可得:,
由可得: 2) 列剪力方程和弯矩方程。
剪力方程为:
弯矩方程为:
3) 作剪力图、弯矩图。
如题图(d2)所示。
4) 梁的最大剪力和弯矩。
h) 受力如图(h)所示。
1) 计算支反力和。由可得:
由可得:2) 列剪力方程和弯矩方程。
剪力方程为:
弯矩方程为:
3) 作剪力图、弯矩图。
如题图(h2)所示。
4) 梁的最大剪力和弯矩。
j) 受力如图(j)所示。
1) 计算支反力和。
由可得:由上式可得。
由可得:2) 列剪力方程和弯矩方程。
剪力方程为:
弯矩方程为:
3) 作剪力图、弯矩图。
如题图(j2)所示。
4) 梁的最大剪力和弯矩。
l) 受力如图(l)所示。
(1) 列剪力方程和弯矩方程。
用假想截面截开,取左段进行研究可得剪力方程和弯矩方程:
(2) 作剪力图、弯矩图。
如题图(l2)所示。
3) 梁的最大剪力和弯矩。
5.4 矩形截面悬臂梁如图所示,已知,,,试确定此梁横截面的尺寸。
解显而易见,梁的最大弯矩发生在固定端截面上。
梁的强度条件为:
将代入上式得。
5.12 ⊥形截面铸铁悬臂梁,尺寸及载荷如图(a)所示。若材料的拉伸许用应力,压缩许用应力,截面对形心轴的惯性矩,,试计算该梁的许可载荷f。
解梁的弯矩图如图(b)所示,弯矩的两个极值分别为:,。
根据弯曲正应力的强度条件。
由a截面的强度要求确定许可载荷。
由抗拉强度要求得:
由抗压强度要求得:
由c 截面的强度要求确定许可载荷。
由抗拉强度要求得:
显然c截面的压应力小于a截面同侧的拉应力,不必进行计算。许用载荷为。
5.16 铸铁梁的载荷及横截面尺寸如图(a)所示。许用拉应力,许用压应力。
试按正应力强度条件校核梁的强度。若载荷不变,但将t形横截面倒置,即翼缘在下成为⊥形,是否合理? 何故?
解截面的几何性质。
组合面积的形心:,平行轴定理:)
作梁的弯矩图如图(b)所示。
根据弯曲正应力的强度条件。
b截面上的最大拉应力和最大压应力为:
c截面上的最大拉应力和最大压应力为:
由此可知, 最大应力小于许用应力,安全。
材料力学习题答案
7.3 在图示各单元体中,试用解析法和 法求斜截面ab上的应力。应力的单位为mpa。解 a 如受力图 a 所示,1 解析法计算 注 p217 2 法。作坐标系,取比例1cm 70mpa,由 定dx 点,定dy点,连dx dy 36 7.3 在图示各单元体中,试用解析法和 法求斜截面ab上的应力。应力...
材料力学习题册答案
练习1 绪论及基本概念。1 1 是非题。1 材料力学是研究构件承载能力的一门学科。是 2 可变形固体的变形必须满足几何相容条件,即变形后的固体既不可以引起 空隙 也不产生 挤入 现象。是 3 构件在载荷作用下发生的变形,包括构件尺寸的改变和形状的改变。是 4 应力是内力分布集度。是 5 材料力学主要...
材料力学各章习题答案
习题答案。第1章绪论。1 1 ab杆弯曲,fs 2.5kn,m 2.5kn m nc杆拉伸,fn 2.5kn 1 4 m 1.25 10 4,1.25 10 4rad。第2章拉伸 压缩与剪切。2 1 a fn1 f,fn2 f b fn1 2f,fn2 0 c fn1 2f,fn2 f d fn1 ...