北师大版五年级数学上册总复习 知识点整理

发布 2020-11-13 12:15:28 阅读 1834

第一单元倍数与因数(在自然数(0除外)范围内研究倍数和因数。)

1、像……这样的数是自然数。

2、像……这样的数是整数。

3、※一个数只有1和它本身两个因数,这个数叫质数。

第一单元倍数与因数(在自然数(0除外)范围内研究倍数和因数。)

1、像……这样的数是自然数。

2、像……这样的数是整数。

3、※一个数只有1和它本身两个因数,这个数叫质数。

一个数除了1和它本身以外还有别的因数,这个数叫合数。

1既不是质数,也不是合数。

20以内的质数和合数:

4、倍数和因数: 举例如4×5=20,20是4和5的倍数,4和5是20的因数,倍数和因数是相互依存的。

5、找倍数:从1倍开始有序的找。

6、一个数倍数的特点: ①一个数的倍数的个数是无限的;

最小的倍数是它本身; ③没有最大的倍数。

7、找因数:找一个数的因数,一对一对有序的找较好。

8、一个数因数的特点: ①一个数的因数的个数是有限的;

最小的因数是1;③最大的因数是它本身。

的倍数的特征:个位是的数是2的倍数。

10、奇数和偶数:是2的倍数的数叫偶数,不是2的倍数的数叫奇数。

按一个数是不是2的倍数来分,自然数可以分成两类:奇数和偶数。

的倍数的特征:个位是0或5的数是5的倍数。

的倍数的特征:各个数位上的数字的和是3的倍数,这个数就是3的倍数。

13、既是2的倍数又是5的倍数的特征:个位是0的数。

既是2的倍数又是3的倍数的特征:①个位是的数;②各个数位上的数字的和是3的倍数。

既是3的倍数又是5的倍数的特征:①个位是0或5的数;

②各个数位上的数字的和是3的倍数。

既是2的倍数又是3的倍数还是5的倍数的特征: ①个位是0的数; ②各个数位上的数字的和是3的倍数。

9的倍数的特征:各个数位上的数字的和是9的倍数,这个数就是9的倍数。

14、按一个数的因数个数分,自然数可以分为三类:质数、合数和1。

第二单元图形的面积(一)

1、 长方形周长=(长+宽)×2 c = 2 ( a + b )

2、 长方形面积=长×宽s = a b

3、 正方形周长=边长×4c = 4 a

4、 正方形面积=边长×边长s = a 2

5、 平行四边形面积=底×高s = a h

6、 平行四边形底=面积÷高a = s ÷ h

7、 平行四边形高=面积÷底h = s ÷ a

8、 三角形面积=底×高÷2 s = a h ÷ 2

9、 三角形底=面积×2÷高 a = 2 s ÷ h

10、 三角形高=面积×2÷底 h = 2 s ÷ a

11、 梯形面积=(上底+下底)×高÷2 s = a + b ) h ÷ 2

12、 梯形高=梯形面积×2÷(上底+下底) h = 2 s ÷(a + b )

13、 梯形上底=梯形面积×2÷高-下底 a = 2 s ÷ h - b

14、 梯形下底=梯形面积×2÷高-上底 b = 2 s ÷ h - a

15、 1平方千米=100公顷=1000000平方米。

16、 1公顷=10000平方米。

17、 1平方米=100平方分米=10000平方厘米。

第三单元分数。

1、分数:把整体“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。

2、分数单位:把整体“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。表示其中的一份的数,叫做这个分数的分数单位。

3、真分数:分子小于分母的分数叫做真分数。真分数小于1。

4、假分数:分子大于或等于分母的分数,叫做假分数。假分数都大于或等于1。

5、假分数化成带分数:用分子除以分母,商是带分数的整数部分,余数是带分数分数部分的分子,分母不变。

6、几个数公有的因数叫做这几个数的公因数。其中最大的一个,叫做它们的最大公因数。用短除法求最大公因数。

7、互质:两个数的公因数只有1,这两个数叫做互质。

互质的规律:

1) 相邻的自然数互质;(2) 相邻的奇数都是互质数;

3) 1和任何数互质;(4) 两个不同的质数互质。

5) 2和任何奇数互质。

质数与互质的区别:质数是就一个数而言,而互质是指两个或两个以上的数之间的关系;这些数本身不一定是质数,但它们之间最大的公因数是1,如8和9.

8、 几个数公有的倍数叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数。用短除法求最小公倍数。

10、 分子分母互质的分数叫最简分数,或者说分子分母的公因数只有的1的分数是最简分数。

11、 约分:把一个分数的分子和分母同时除以公因数,分数值不变,这个过程叫做约分。计算结果通常用最简分数表示。

12、 通分:把异分母分数分别化成同分母分数,叫通分。通常用最小公倍数做分数的分母较简便。

13、 如何比较分数的大小:

分母相同时,分子大的分数大;

分子相同时,分母小的分数大;

分子分母都不同时,通分再比。

14、 分数基本性质:分数的分子和分母同时乘或除以相同的数(零除外),分数大小不变。

15、 的意义:①把单位“1”平均分成4份,表示这样的3份。②把3平均分成4份,表示这样的1份。

数学与交通:

1、 相遇问题:

基本公式:一个人走:速度×时间=路程。

两个人同时相对而行:速度和×相遇时间=两人共走路程。

甲走的路程+乙走的路程=两人共走的路程。

2、 旅游费用:

购票方案:根据人数的多少,**的不同以及团体优惠人数的多少,合理选择一种方案购票或几种方案结合起来购票。若只有a、b两种方案是,只要选择其中一种**便宜的就行。

租车问题: 两个原则:一是尽量多的使用更便宜的车;

二是空位越少越好。

3、 看图找关系:

读懂图表中的有关信息,一定要分析横轴与纵轴分别表示的是什么。

在速度与时间的关系上,线往上画,说明提速;与横轴平行,说明匀速行驶;线往下画,说明减速。

在时间与路程的问题上,线往上画,说明从某地出发;与横轴平行,说明原地不动;线往下画,说明又从终点回到某地。

第四单元分数加减法。

1、异分母分数加减法方法:先通分,化成同分母分数,再按照同分母分数加减法的方法进行计算。

2、分数加减法对计算结果的要求:能约分的要约分,一定要约成最简分数。

3、分数化成小数的方法:用分子除以分母,除不尽的,按题目要求保留一定位数的小数,没有要求时,一般保留三位小数。

4、小数化成分数的方法:看小数部分有几位,就在1后面加几个零做分母,去掉小数点做分子,能约分的要约分。

第五单元图形的面积(二)

1、求组合图形面积的方法:

分割法:根据图形和所给的条件,将图形进行合理的分割,形成基本图形,基本图形面积的和就是组合图形面积。

添补法:将图形所缺部分进行添补,组成几个基本图形。基本图形面积-添补的图形面积=组合图形面积。

2、不规则图形面积的估计与计算:

数格子的方法;

根据不规则图形确定近似的基本图形,量出求基本图形的面积是所需要的条件算出面积。

鸡兔同笼:方法:①列表法:一般采用取中间数列表的方法;

②画图法;③假设法;

④列方程:根据关系式:“一种动物腿的条数+另一种动物腿的条数=腿的总条数”解答。

点阵中的规律:

1、数与数之间的变化规律:根据已知数前后或上下之间的关系,找到其中的规律,得出相应的数。

2、图形与图形之间的变化规律:观察图形的变化,可以从图形的形状、数量、大小等方面入手,从中找到规律,推导出后面的图形。

第六单元可能性大小。

1、确定事件的表示方法:用1表示事件一定发生,用0表示事件一定不会发生。

2、可能出现的事件的表示方法:用分数表示可能性的大小,首先明确事件可能出现的所有情况作分母,其次把可能出现的结果做分子。

3、设计活动方案:充分认识用来表示可能性的分数的含意,即:事件可能出现的所有情况作分母,把可能出现的结果做分子。

铺地砖:1、长方形的面积=长×宽, 正方形的面积=边长×边长。

2、面积单位之间的关系:1平方米=100平方分米=10000平方厘米。

1平方分米=100平方厘米。

3、求地面铺地砖总块数的方法:

用房间面积÷每块地砖的面积=所铺地砖的块数。

用每平方米所需的块数×房间总面积=所铺地砖的块数。

看长里有多少个地砖的边长,宽里有多少个地砖的边长,再用长里所需的块数乘以宽里所需的块数,用方程解。

所注意的问题:最后的结果不是整块数时,一定要用进一法却近似值,求出的钱数最后结果要自觉保留两位小数。-

第一单元倍数与因数(在自然数(0除外)范围内研究倍数和因数。)

1、像……这样的数是自然数。

2、像……这样的数是整数。

3、※一个数只有1和它本身两个因数,这个数叫质数。

北师大版五年级数学上册总复习

第三课时分数加减法及解决问题 复习内容 教材第96页 总复习 中的第10 15题。复习目标 1 进一步理解和掌握异分母分数加减法的计算方法。2 能理解分数加减混合运算的顺序,并能正确进行计算。3 会用加法的运算定律进行简便运算。4 能正确运用所学的知识解决简单的实际问题。复习过程 1 引入课题。教师...

北师大五年级数学上册总复习

第一课时倍数与因数。复习内容 教材第94页 总复习 中的第1 4题。复习目标 1 使学生进一步掌握倍数和因数的相关知识,能正确判断奇数和偶数 质数和合数。2 能根据 和3的倍数的特征,正确判断 和3的倍数。复习过程 一 复习引人。1 再现所学知识。1 提出问题 本学期你学到了那些数学知识?2 小组讨...

北师大版五年级数学上册复习

五年级数学上册复习资料。一 倍数与因数。1 自然数与整数。正整数 像 整数 0负整数 像 1 2 3 4 2 倍数与因数。倍数和因数是相互依存的,不能单独地说谁是倍数,谁是因数,只能说谁是谁的倍数,谁是谁的因数。如 4 5 20 或20 4 5 4和5是20的因数,20是4和5的倍数。但不能说4和5...