一、圆柱。
圆柱的定义。
1、以矩形的一边绕着另一条边旋转360°,所得到的空间几何体叫做圆柱,即ag矩形的一条边为轴,旋转360°所得的几何体就是圆柱。其中ag叫做圆柱的轴,ag的长度叫做圆柱的高,所有平行于ag的线段叫做圆柱的母线,da和d'g旋转形成的两个圆叫做圆柱的底面,dd'旋转形成的曲面叫做圆柱的侧面。
2、在同一个平面内有一条定直线和一条动线,当这个平面绕着这条定直线旋转一周时,这条动线所成的面叫做旋转面,这条定直线叫做旋转面的轴,这条动线叫做旋转面的母线。如果母线是和轴平行的一条直线,那么所生成的旋转面叫做圆柱面。如果用垂直于轴的两个平面去截圆柱面,那么两个截面和圆柱面所围成的几何体叫做直圆柱,简称圆柱。
圆柱的表面积。
圆柱体表面的面积,叫做这个圆柱的表面积.
圆柱的表面积=2×底面积+侧面积。
圆柱的侧面展开以后是一个正方形(长方形),侧面展开以后的长是底面周长,宽是高,所以侧面积=底面周长×高。
设一个圆柱底面半径为r,高为h,则表面积s:
s=2*s底+s侧。
=2*πr2+ch
圆柱的体积。
圆柱所占空间的大小,叫做这个圆柱体的体积.
圆柱的体积跟长方体、正方体一样,都是底面积×高:设一个圆柱底面半径为r,高为h,则体积v:v=πr2h
如s为底面积,高为h,体积为v:v=sh
圆柱的侧面积。
圆柱的侧面积=底面周长乘高 s侧=ch
注:c为πd
圆柱各部分的名称。
圆柱的的两个圆面叫做底面(又分上底和下底);周围的面叫做侧面;两个底面之间的距离叫做高(高有无数条)。
二、圆锥。圆锥的体积。
一个圆锥所占空间的大小,叫做这个圆锥的体积.
一个圆锥的体积等于与它等底等高的圆柱的体积的1/3
根据圆柱体积公式v=sh(v=rrπh),得出圆锥体积公式:
v=1/3sh(v=1/3sh)
s是底面积,h是高,r是底面半径。
证明:把圆锥沿高分成k分
每份高 h/k,
第 n份半径:n*r/k
第 n份底面积:pi*n^2*r^2/k^2
第 n份体积:pi*h*n^2*r^2/k^3
总体积(1+2+3+4+5+..n)份:pi*h*(1^2+2^2+3^2+4^2+..k^2)*r^2/k^3
因为 1^2+2^2+3^2+4^2+..k^2=k*(k+1)*(2k+1)/6
所以 总体积(1+2+3+4+5+..n)份:pi*h*(1^2+2^2+3^2+4^2+..k^2)*r^2/k^3
=pi*h*r^2* k*(k+1)*(2k+1)/6k^3
=pi*h*r^2*(1+1/k)*(2+1/k)/6
因为当n越来越大,总体积越接近于圆锥体积,1/k越接近于0
所以pi*h*r^2*(1+1/k)*(2+1/k)/6=pi*h*r^2/3
因为v柱=pi*h*r^2
所以 v锥是与它等底等高的v柱体积的1/3
圆锥的表面积。
一个圆锥表面的面积叫做这个圆锥的表面积.
圆锥的计算公式。
圆锥的侧面积=高的平方*π*百分之扇形的度数。
圆锥的侧面积=1/2*母线长*底面周长。
圆锥的表面积=底面积+侧面积 s=πr的平方+πra (注a=母线)
圆锥的体积=1/3sh 或 1/3πr的平方h
如果圆锥和他的扇形联系在一起那么n=a/r*360
圆锥的其它概念。
圆锥的高:圆锥的顶点到圆锥的底面圆心之间的距离叫做圆锥的高;
圆锥的侧面积:
将圆锥的侧面沿母线展开,是一个扇形;没展开时是一个曲面。
圆锥的母线:
圆锥的侧面展开形成的扇形的半径、底面圆上到顶点的距离。
圆锥有一个底面、一个侧面、一个顶点、一条高、无数条母线,且侧面展开图是扇形。
圆柱与圆锥的关系。
与圆柱等底等高的圆锥体积是圆柱体积的三分之一。
体积和高相等的圆锥与圆柱之间,圆锥的底面积是圆柱的三倍。
体积和底面积相等的圆锥与圆柱之间,圆锥的高是圆柱的三倍。
不相等的圆柱圆锥不相等。
六年级数学第二单元《圆》试题
第二单元测试题。一 填空。10分 1 某班有50人,新转来2名同学,现有人数比原来增加了 2 10米比 多25 米比12米少20 3 某班出席48人,出勤率是96 有 个人没来。5 一块麦地今年产量比去年增产二成,就是说今年是去年产量的 6 某商品打七五折销售,说明现价比原价少 7 125千克增加1...
人教版小学数学六年级下册第二单元圆柱与圆
人教版小学数学六年级下册 第二单元圆柱与圆锥 圆柱 第一课时教学设计教学。圆柱的认识,圆柱的特征 底面 侧面 高以及侧。时间分配。讲授16分。练习24分。内容面展开图与圆柱的关系等教学理念。注重学生已有的生活经验,感受数学 于生活,运用于生活。教学伊始,先出示情境图,让学生观察生活中的圆柱,并让学生...
人教版小学数学六年级下册第二单元圆柱与圆
人教版小学数学六年级下册 第二单元圆柱与圆锥 圆柱 第一课时教学设计教学。圆柱的认识,圆柱的特征 底面 侧面 高以及侧。时间分配。讲授16分。练习24分。内容面展开图与圆柱的关系等教学理念。注重学生已有的生活经验,感受数学 于生活,运用于生活。教学伊始,先出示情境图,让学生观察生活中的圆柱,并让学生...