小学数学六年级下册第五单元教材分析数学广角

发布 2020-08-08 22:13:28 阅读 7953

六下第五单元教材分析数学广角

2009-2-18 9:36:00 | by: xxsx ]

推荐。一、抽屉原理简介。

抽屉原理又称鸽巢原理, “抽屉原理”最先是由19世纪的德国数学家狄里克雷(dirichlet)运用于解决数学问题的,所以又称“狄里克雷原理”

原理1:把m个物体任意分放进n个空抽屉里(m>n,n是非0自然数),那么一定有一个抽屉中放进了至少2个物体。

原理2:把多于个kn物体任意分放进n个空抽屉里(k是正整数),那么一定有一个抽屉中放进了至少(k+1)个物体 。

原理3:无穷多个元素分成n个集合,则至少有一个集合中含有无穷多个元素。

在这类问题中,只需要确定某个物体(或某个人)的存在就可以了,并不需要指出是哪个物体(或哪个人),也不需要说明是通过什么方式把这个存在的物体(或人)找出来。

现行的小学课本中只编排了抽屉原理的教学。

二、 运用抽屉原理解题的步骤

第一步:分析题意。分清什么是“东西”,什么是“抽屉”,也就是什么作“要分的物体”,什么可作“抽屉”。

第二步:制造抽屉。这个是关键的一步,这一步就是如何设计抽屉。

根据题目条件和结论,结合有关的数学知识,抓住最基本的数量关系,设计和确定解决问题所需的抽屉及其个数,为使用抽屉铺平道路。

第三步:运用原理。观察题设条件,结合第二步,恰当应用各个原则或综合运用几个原则,以求问题之解决。

三、理解抽屉原理要注意几点。

1)抽屉原理是讨论物品与抽屉的关系,要求物品数比抽屉数或抽屉数的倍数多,至于多多少,这倒无妨。

2)“任意放”的意思是不限制把物品放进抽屉里的方法,不规定每个抽屉中都要放物品,即有些抽屉可以是空的,也不限制每个抽屉放物品的个数。

3)抽屉原理只能用来解决存在性问题,“至少有一个”的意思就是存在,满足要求的抽屉可能有多个,但这里只需保证存在一个达到要求的抽屉就够了。

4)将a件物品放入n个抽屉中,如果a÷n= m……b,其中b是自然数,那么由抽屉原理2就可得到,至少有一个抽屉中的物品数不少于(m+1)件。

四、教学建议。

1. 应让学生初步经历“数学证明”的过程。

在小学阶段,虽然并不需要学生对涉及到“抽屉原理”的相关现象给出严格的、形式化的证明,但仍可引导学生用直观的方式进行“就事论事”式的解释。教学时可以鼓励学生借助学具、实物操作或画草图的方式进行“说理”。通过这样的方式,有助于逐步提高学生的逻辑思维能力,为以后学习较严密的数学证明做准备。

2. 应有意识地培养学生的“模型”思想。

抽屉问题”的变式很多,应用更具灵活性。但能否将这个具体问题和“抽屉问题”联系起来,能否找到问题中的具体情境和“抽屉问题”的“一般化模型”之间的内在关系是影响能否解决该问题的关键。教学时,要引导学生先判断某个问题是否属于用“抽屉原理”可以解决的范畴,如果可以,再思考如何寻找隐藏在其背后的“抽屉问题”的一般模型。

3. 要适当把握教学要求。

抽屉原理”的应用广泛且灵活多变,因此,用“抽屉原理”来解决实际问题时,有时要找到实际问题与“抽屉问题”之间的联系并不容易。因此,教学时,不必过于追求学生“说理”的严密性,只要能结合具体问题把大致意思说出来就可以了,更要允许学生借助实物操作等直观方式进行猜测、验证。

教材解读。一、教学目标。

1. 经历“抽屉原理”的**过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。

2. 通过“抽屉原理”的灵活应用感受数学的魅力。

二、教学内容。

例1比较简单的抽屉原理。

把m个物体任意分放进n个空抽屉里(m>n,n是非0自然数),那么一定有一个抽屉中放进了至少2个物体。

例2比较简单的抽屉原理。

把多于个kn物体任意分放进n个空抽屉里(k是正整数),那么一定有一个抽屉中放进了至少(k+1)个物体 。

例3抽屉原理的具体应用。

“抽屉原理”的具体应用。

三、教材说明和建议:

例1、把4枝铅笔放在3个文具盒里,不管怎么放,总有一个文具盒里至少放进2枝铅笔。为什么呢?

为了解释这一现象,教材呈现了两种思考方法。第一种方法是用操作的方法进行枚举。通过直观地摆铅笔,发现把4枝铅笔分配到3个文具盒中一共只有四种情况。

实际上,从数的分解的角度来说,这种方法相当于把4分解成三个数,共有四种情况,即(4,0,0),(3,1,0),(2,2,0),(2,1,1),每一种结果的三个数中,至少有一个数是不小于2的。

第二种方法采用的是“假设法”的思路,即假设先在每个文具盒中放1枝铅笔,3个文具盒里就放了3枝铅笔。还剩下1枝,放入任意一个文具盒,那么这个文具盒中就有2枝铅笔了。这种方法比第一种方法更为抽象,更具一般性。

例如,如果要回答“为什么把(n +1)枝铅笔放进 n个文具盒,总有一个文具盒里至少放进2枝铅笔”的问题,用枚举的方法就很难解释,但用“假设法”来说明就很容易了。

教学建议。由于例题中的数据较小,为学生自主探索提供了很大的空间。因此,教学时,可以放手让学生自主思考,先采用实践操作的方法进行“证明”,然后再进行交流。

只要是合理的,都应给予鼓励。在此过程中,教师也应给予适当的指导。

教学时应有意识地让学生理解“抽屉问题”的“一般化模型”。教学时,在学生自主探索的基础上,可以引导他们对教材上提供的两种方法进行比较,思考一下枚举的方法有什么优越性和局限性,假设的方法有什么优点,使学生逐步学会运用一般性的数学方法来思考问题。

学生在解决了“4枝铅笔放进3个文具盒”的问题以后,可以让学生继续思考:

把5枝铅笔放进4个文具盒,总有一个文具盒里至少放进2枝铅笔,为什么?

如果把6枝铅笔放进5个文具盒,结果是否一样呢?

把7枝铅笔放进6个文具盒呢?

把10枝铅笔放进9个文具盒呢?

把100枝铅笔放进99个文具盒呢?

引导学生得出一般性的结论:只要放的铅笔数比文具盒的数量多1,总有一个文具盒里至少放进2枝铅笔。接着,可以继续提问:

如果要放的铅笔数比文具盒的数量多2,多3,多4呢?引导学生发现:只要铅笔数比文具盒的数量多,这个结论都是成立的。

通过这样的教学过程,有助于发展学生的类推能力,形成比较抽象的数学思维。

例一的教学:引导学生自主探索,得出一般性结论。

1、体验方法多样。

1)枚举法),2)假设法:

假设每个文具盒只放1枝铅笔,最多放3只。剩下的1枝还要放进1个文具盒。所以至少有2枝铅笔放进同一个文具盒。(算式)

假设法最核心的思路就是把书尽量多地“平均分”给各个抽屉,看每个抽屉能分到多少本书,剩下的书不管放到哪个抽屉,总有一个抽屉比平均分得的本数多1本。这个核心思路是用“有余数除法”这一数学形式表示出来的,需要学生借助直观,逐步理解并掌握。

2、体验方法优劣。

枚举法受到数量多少的局限。

假设法能够方便地解决一般性的问题。

为了对这类“抽屉问题”有更深的理解,教材在“做一做”中安排了一个“鸽巢问题”。学生可以利用例题中的方法迁移类推,加以解释。

做一做:6只鸽子飞回5个鸽舍,至少有2只鸽子要飞进同一个鸽舍里。为什么?

解答:假设每个鸽舍只飞进1只鸽子,最飞进5只鸽子。剩下的1只鸽子还要飞进同一个鸽舍里。所以至少有2只鸽子要飞进同一个鸽舍里。(算式)、抽屉 、答语。

例2 教材说明

例2、把5本书放进2个抽屉里,不管怎么放,总有一个抽屉至少放进3本书。7本呢?9本呢?

教材提供了让学生把5本书放进2个抽屉的情境,在操作的过程中,学生发现不管怎么放,总有一个抽屉至少放进3本书,从而产生**原因的愿望。学生仍然可以采用枚举的方法,把5分解成两个数,有(5,0),(4,1),(3,2)三种情况。在任何一种结果中,总有一个数不小于3。

更具一般性的仍然是假设的方法,即先把5本书“平均分成2份”。利用有余数除法5÷2=2……1可以发现,如果每个抽屉放进2本,还剩1本。把剩下的这1本放进任何一个抽屉,该抽屉里就有3本书了。

研究了“把5本书放进2个抽屉”的问题后,教材又进一步提出“如果一共有7本书,9本书,情况会怎样?”的问题,让学生利用前面的方法进行类推,得出“7本书放进2个抽屉,总有一个抽屉至少放进4本书,9本书放进2个抽屉,总有一个抽屉至少放进5本书”的结论。

在此基础上,让学生观察这几个“抽屉问题”的特点,寻找规律,使学生对这一类“抽屉原理”达到一般性的理解。

教学建议:教学例2时,仍应鼓励学生用多样化的方法解决问题,自行总结“抽屉原理”。例如,在解决“5本书放2个抽屉”的问题时,由于数据较小,学生用动手操作或分解数的方法仍有其直观、简单的特点,这也是学生最容易想到的方法。

但由于枚举的方法毕竟受到数据大小的限制,随着书的本数的增多,教师应该进行适当的引导。例如,可以提问学生“113本书放进2个抽屉呢?”由于数据很大,用枚举法解决就相当繁琐了,就可以促使学生自觉采用更一般的方法,即假设法。

假设法最核心的思路就是把书尽量多地“平均分”给各个抽屉,看每个抽屉能分到多少本书,剩下的书不管放到哪个抽屉,总有一个抽屉比平均分得的本数多1本。这个核心思路是用“有余数除法”这一数学形式表示出来的,需要学生借助直观,逐步理解并掌握。

做一做:8只鸽子飞回3个鸽舍,至少有3只鸽子要飞进同一个鸽舍里。为什么?

解答:假设每个鸽舍只飞进2只鸽子,最飞进6只鸽子。剩下的2只鸽子还要飞进鸽舍里。所以至少有3只鸽子要飞进同一个鸽舍里。

学生完成“做一做”时,可以仿照例2,利用8÷3=2……2,可知总有一个鸽舍里至少有3只鸽子。

需要注意的是,例2中“某个抽屉至少有的书的本数”是除法算式中的商加“1”,而例2中除法算式的余数也正好是1,很容易让学生错误地理解成是商加“余数”,并迁移到“做一做”,想成至少有“2(商)+2(余数)”,把结论变成“至少有4只鸽子要飞进同一个鸽舍里”。事实上,只要学生从本质上理解“抽屉原理”的推理过程,就能克服这种错误理解。

例2的教学:引导学生利用有余数除法原理的角度探索,得出一般性结论。

1、关注学习过程:操作、观察、比较、合情推理、归纳。

2、注重方法多样:

枚举法:(5,0),(4,1),(3,2)三种情况,可知在任何一种结果中,总有一个数不小于3,故总有一个抽屉里至少有3本书;

假设法:先把每个抽屉各放1本,还剩下3本,再把每个抽屉各放1本,还剩1本,这样不管怎么放,总有一个抽屉至少放进3本书;也可能有学生说把5本书放进2个抽屉里,如果每个抽屉里先放2本,还剩1本,这本书不管放到哪个抽屉里,总有一个抽屉里至少有3本书。

小学六年级数学下册第五单元教材解读

例1教材借助把4枝铅笔放进3个文具盒中的操作情境,介绍了一类较简单的 抽屉问题 学生在操作实物的过程中可以发现一个现象 不管怎么放,总有一个文具盒里至少放进2枝铅笔。教材呈现第一种方法是用操作的方法进行枚举。通过直观地摆铅笔,发现把4枝铅笔分配到3个文具盒中一共只有四种情况 在这里,只考虑存在性问题...

小学数学六年级上册第五单元教材分析

第五单元认识比。第75页,例5 给30个方格分别涂上红色和黄色,使红色与黄色方格数的比是3 2。两种颜色各应涂多少格?本题意在让学生学会按比例分配的方法。教材的编排意图是让学生先分析3 2的意义,然后理解题中黄色方格与红色方格数量之间的关系,尝试列式解答。为了能让学生真真切切地从体验中理解按比例分配...

苏教版小学语文六年级下册第五单元教材分析及教学设计

第五单元的主题为感悟人生,安排了 天游峰的扫路人 最大的麦穗 山谷中的谜底 三篇课文及习作。五 练习5。教学中,教师应该根据课文的特点和学生的实际情况进行教学 天游峰的扫路人 这篇散文用细腻的笔触描写了我登天游峰时的所见 所闻 所感刻画了一位质朴而充满自信的老人形象,表达了我对老人自强不息,开朗豁达...