新湘教版七年级上册数学教案 全册

发布 2023-04-20 08:55:28 阅读 2671

第一章有理数。

一、全章概况:

本章主要分两部分:有理数的认识,有理数的运算。

二、本章教学目标。

1、知识与技能。

1)理解有理数的有关概念及其分类。

2)能用数轴上的点表示有理数,会比较有理数的大小,会求有理数的相反数与绝对值(绝对值符号内不含字母)。

3)理解有理数运算的意义和有理数运算律,经历探索有理数运算法则和运算律的过程,掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步为主),并能运用运算律简化运算。

4)能运用有理数的有关知识解决一些简单的实际问题。

2、过程与方法。

1)通过实例的引入,认识到数学的发展**于生产和生活,培养学生热爱数学并自学地学习数学的习惯。

2)通过对有理数的加、减、乘、除、乘方的学习,培养学生独立思考、认真作业的态度,提高运算能力,逐步激发学生的创新意识。

3、情感、态度与价值观。

1)通过对有理数有关概念的理解,使学生了解正与负、加与减、乘与除的辩证关系,初步感受数学的分类思想。

2)通过师生互动,讨论与交流,培养学生善于观察、抽象、归纳的数学思想品质,提高分析问题和解决问题的能力。

三、本章重点难点:

1、重点:有理数的运算。

2、难点:对有理数运算法则的理解(特别是混合运算中符号的确定)。

四、本章教学要求。

认识有理数,首先是引入负数,必须从学生熟知的现实生活中,挖掘具有相反意义的量的资源,让学生有真切的感受,然后才引出用正负数表示这些具有相反意义的量,在理解有理数的意义时,注意运算数轴这个直观模型。

无论是有理数的认识,还是有理数运算的教学,都应设法让学生参与到“观察、探索、归纳、猜测、分析、论证、应用”等数学活动中来,并适时搭建“合作交流”的平台,让学生在学习数学中,动脑想、动手做、动口说,力求让学生自己建立个性化的认识结构。

在有理数的运算教学中,应鼓励学生自己探索运算法则和运算律,并通过适量的练习巩固,提倡算法多样化,反对做繁难的笔算,遇到较为复杂的计算应指导使用计算器。

注意教学反思。关注学生的学习过程,及时调整教学,促进师生共同改进。

1.1 具有相反意义的量第1课时。

教学内容:§1.1 具有相反意义的量。

教学目标:1、知识与技能。

1)通过实例,感受引入负数的必要性和合理性,能应用正负数表示生活中具有相反意义的量。

2)理解有理数的意义,体会有理数应用的广泛性。

2、过程与方法。

通过实例的引入,认识到负数的产生是**于生产和生活,会用正、负数表示具有相反意义的量,能按要求对有理数进行分类。

重点、难点:

1、重点:正数、负数有意义,有理数的意义,能正确对有理数进行分类。

2、难点:对负数的理解以及正确地对有理数进行分类。

教学过程:一、创设情景,导入新课。

大家知道,数学与数是分不开的,现在我们一起来回忆一下,小学里已经学过哪些类型的数?

学生答后,教师指出:小学里学过的数可以分为三类:自然数(正整数)、分数和零(小数包括在分数之中),它们都是由于实际需要而产生的.

为了表示一个人、两只手、……我们用到整数1,2,……

为了表示“没有人”、“没有羊”、…我们要用到0.

但在实际生活中,还有许多量不能用上述所说的自然数、零或分数、小数表示。

二、合作交流,解读**。

1、某市某一天的最高温度是零上5℃,最低温度是零下5℃。要表示这两个温度,如果只用小学学过的数,都记作5℃,就不能把它们区别清楚。它们是具有相反意义的两个量。

现实生活中,像这样的相反意义的量还有很多……例如,珠穆朗玛峰高于海平面8848米,吐鲁番盆地低于海平面155米,“高于”和“低于”其意义是相反的。 “运进”和“运出”,其意义是相反的。

同学们能举例子吗?

学生回答后,教师提出:怎样区别相反意义的量才好呢?

待学生思考后,请学生回答、评议、补充。

教师小结:同学们成了发明家。甲同学说,用不同颜色来区分,比如,红色5℃表示零下5℃,黑色5℃表示零上5℃;乙同学说,在数字前面加不同符号来区分,比如,△5℃表示零上5℃,×5℃表示零下5℃……其实,中国古代数学家就曾经采用不同的颜色来区分,古时叫做“正算黑,负算赤”.如今这种方法在记账的时候还使用.所谓“赤字”,就是这样来的。

现在,数学中采用符号来区分,规定零上5℃记作+5℃(读作正5℃)或5℃,把零下5℃记作-5℃(读作负5℃)。这样,只要在小学里学过的数前面加上“+”或“-”号,就把两个相反意义的量简明地表示出来了。

让学生用同样的方法表示出前面例子中具有相反意义的量:

高于海平面8848米,记作+8848米;低于海平面155米,记作-155米;

教师讲解:什么叫做正数?什么叫做负数?

强调,数0既不是正数,也不是负数,它是正、负数的界限,表示“基准”的数,零不是表示“没有”,它表示一个实际存在的数量。并指出,正数,负数的“+”的符号是表示性质相反的量,符号写在数字前面,这种符号叫做性质符号。

2、给出新的整数、分数概念。

引进负数后,数的范围扩大了。过去我们说整数只包括自然数和零,引进负数后,我们把自然数叫做正整数,自然数前加上负号的数叫做负整数,因而整数包括正整数(自然数)、负整数和零,同样分数包括正分数、负分数。

3、给出有理数概念。

整数和分数统称为有理数。

4、有理数的分类。

为了便于研究某些问题,常常需要将有理数进行分类,需要不同,分类的方法也常常不同根据有理数的定义可将有理数分成两类:整数和分数。有理数还有没有其他的分类方法?

待学生思考后,请学生回答、评议、补充。

教师小结:按有理数的符号分为三类:正有理数、负有理数和零。

在有理数范围内,正数和零统称为非负数。向学生强调:分类可以根据不同需要,用不同的分类标准,但必须对讨论对象不重不漏地分类。

三、应用迁移,巩固提高。

例下列给出的各数,哪些是正数?哪些是负数?哪些是整数?哪些是分数?哪些是有理数?-8.4,22,+,0.33,0,-,9

课堂练习:课本p5练习。

四、总结反思。

引导学生回答如下问题:本节课学习了哪些基本内容?学习了什么数学思想方法?应注意什么问题?

由于实际生活中存在着许多具有相反意义的量,因此产生了正数与负数。正数是大于0的数,负数就是在正数前面加上“-”号的数,负数小于0。0既不是正数,也不是负数,0可以表示没有,也可以表示一个实际存在的数量,如0℃。

五、课后作业:课本p5习题1.1a第题。

1.2数轴、相反数与绝对值(1) 第2课时。

教学内容:§1.2数轴、相反数与绝对值(1)

教学目标:1、知识与技能。

1)掌握数轴的三要素,会用数轴上的点表示给定的有理数,会根据数轴上的点读出所表示的有理数。

2)理解任何有理数都可以用数轴上唯一的一个点表示出来。

3)初步理解数形结合的数学思想。

2、过程与方法。

通过游戏,得出本节课所要学习的内容-数轴,感受把实际问题抽象成数学问题,激发学生的学习兴趣。

重点、难点。

1、重点:数轴的概念及其画法。

2、难点:数轴的画法以及有理数与数轴上的点的对应关系。

教学过程:一、创设情景,导入新课。

1.小学里曾用“射线”上的点来表示数,你能在射线上表示出1和2吗?

2.用“射线”能不能表示有理数?为什么?

3.你认为把“射线”做怎样的改动,才能用来表示有理数呢?

待学生回答后,教师指出,这就是我们本节课所要学习的内容——数轴。

二、合作交流,解读**。

让学生观察挂图——放大的温度计,同时教师给予语言指导:利用温度计可以测量温度,在温度计上有刻度,刻度上标有读数,根据温度计的液面的不同位置就可以读出不同的数,从而得到所测的温度.在0上10个刻度,表示10℃;在0下5个刻度,表示-5℃.

与温度计类似,我们也可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零。具体方法如下(边说边画):

1.画一条水平的直线,在这条直线上任取一点作为原点(通常取适中的位置,如果所需的都是正数,也可偏向左边)用这点表示0(相当于温度计上的0℃);

2.规定直线上从原点向右为正方向(箭头所指的方向),那么从原点向左为负方向(相当于温度计上0℃以上为正,0℃以下为负);

3.选取适当的长度作为单位长度,在直线上,从原点向右,每隔一个长度单位取一点,依次表示为1,2,3,…从原点向左,每隔一个长度单位取一点,依次表示为-1,-2,-3,…

提问:我们能不能用这条直线表示任何有理数?(可列举几个数)

在此基础上,给出数轴的定义,即。

规定了原点、正方向和单位长度的直线叫做数轴.

进而提问学生:在数轴上,已知一点p表示数-5,如果数轴上的原点不选在原来位置,而改选在另一位置,那么p对应的数是否还是-5?如果单位长度改变呢?如果直线的正方向改变呢?

通过上述提问,向学生指出:数轴的三要素——原点、正方向和单位长度,缺一不可。

三、应用迁移,巩固提高。

1、组织学生讨论下列所画的数轴是否正确?如果不正确,指出错在**?

学生活动:学生分组讨论。

归纳:图a所画的数轴缺少单位长度,图b所画的数轴缺少正方向,图d所画的数轴单位长度不一致。

学生讨论:数轴上的点是不是都表示有理数?

教师指出:任何有理数都可以用数轴上的唯一的一个点来表示,但数轴上的点不一定都表示有理数。

2、p9第题:

例1、 指出数轴上的点m、p、q分别表示哪个有理数?

例2、画一条数轴,把有理3,1.5,-1.5用数轴上的点表示来。

学生活动:在练习本上完成这两道题,并与同桌进行交流。

教师活动:任请一位同学说出例1的答案并进行全班交流,然后再请一位同学到黑板演示例2的解答。师生共同订正,培养学生数形结合的思想。

3、课堂练习:课本p9第题。

最后引导学生得出结论:正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,零用原点表示.

四、总结反思。

指导学生阅读教材后指出:数轴是非常重要的数学工具,它使数和直线上的点建立了对应关系,它揭示了数和形之间的内在联系,为我们研究问题提供了新的方法。

本节课要求同学们能掌握数轴的三要素,正确地画出数轴,在此还要提醒同学们,所有的有理数都可用数轴上的点来表示,但是反过来不成立,即数轴上的点并不是都表示有理数,至于数轴上的哪些点不能表示有理数,这个问题以后再研究。

五、课后作业。

课本p13习题1.2a组第题。

1.2数轴、相反数与绝对值(2) 第3课时。

学年湘教版数学七年级上册全册教案

11具有相反意义的量 教材分析。1.本章主要内容是有理数的有关概念及有理数的运算。有理数是在小学学习了数的初步知识和数的加减乘除计算的基础上进行学习的,是中学数学学习的基础,也是研究其他学科的工具。通过学习本章有理数的有关概念 包括有理数的定义 分类 相反数 绝对值 倒数等 及有理数的运算,从而掌握...

华师大版七年级上册数学教案全册

华东师大版。第一章 走进数学世界。与数学交朋友 第1课时 教学目标 1 知识与技能 结合具体例子,体会数学与我们的成长密切相关,人类离不开数学 2 过程与方法 经历回顾与观察,体会数学的重要作用 3 情感态度与价值观 激发学习兴趣,增强数学应用意识。教学过程 一 导入。让学生看课本 教师诵读文字部分...

湘教版七年级上册地理全册教案

第1课。第一章让我们走进地理。我们身边的地理知识。课型 新授课课时 1课时授课时间授课班级 七年级。主备 杨花梅。参备 熊凯寅。教学目标。一 知识目标。1 激发学生对地理的探索兴趣,让学生了解我们生活的地理环境中存在着许多地理之谜 地理问题。2 通过联系实际,使学生知道在日常生活 经济建设 社会文化...