行程问题(一)
讨论有关物体运动的速度、时间、路程三者关系的应用题叫做行程应用题。
行程问题的主要数量关系是:
路程=速度×时间。
如果用字母s表示路程,t表示时间,v表示速度,那么,上面的数量关系可用字母公式样表示为:s=vt。
行程问题内容丰富多彩、千变万化。主要有一个物体的运动和两个或几物体的运动两大类。两个或几个物体的运动又可以分为相遇问题、追及问题两类。
这一讲我们学习一个物体运动的问题的一些简单的相遇问题。
例题与方法:
例1.小明上学时坐车,回家时步行,在路上一共用了90分。如果他往返都坐车,全部行程需30分。如果他往返都步行,需多少分?
例2.甲、乙两城相距280千米,一辆汽车原定用8小时从甲城开到乙城。汽车行驶了一半路程,在中途停留30分。如果汽车要按原定时间到达乙城,那么,在行驶后半段路程时,应比原来的时速加快多少?
例3.一列火车于下午1时30分从甲站开出,每小时行60千米。1小时后,另一列火车以同样的速度从乙站开出,当天下午6时两车相员。甲、乙两站相距多少千米?
例4.苏步青教授是我国著名的数学家。一次出国访问,他在电车上碰到了一位外国数学家,这位外国数学家出了一道题目让苏步青做,题目是:
甲、乙两人同时从两地出发,相向而行,距离是100千米。甲每小时行6千米,乙每小时行4千米。甲带着一只狗,狗每小时行10千米。
这只狗同甲一道出发,碰到乙的时候,它就掉头朝甲这边走,碰到甲时又往乙那边走,直到两人相遇。这只狗一共走了多少千米?
苏步青略加思索,就把正确答案告诉了这位外国数学家。小朋友们,你能解答这道题吗?
例5.甲、乙两辆汽车同时从东、西两地相向开出,甲车每小时行56千米,乙车每小时行48千米,两辆汽车在距中点32千米处相遇。东、西两地相距多少千米?
练习与思考:
1.小王、小李从相距50千米的两地相向而行,小王下午2时出发步行,每小时行4.5千米。小李下午3时半骑自行车出发,、经过2.5小时两人相遇。小李骑自行车每小时行多少千米?
2.a、b两地相距60千米。两辆汽车同时从a地出发前往b地。甲车比乙车早30分到达b地。当甲车到达b地时,乙车离b地还有10千米。甲国君从a地到b地共行了几小时?
3.一辆公共汽车和一辆面包车同时从相距255千米的两地相向而行,公共汽车每小时行33千米,面包车每小时行35千米。行了几小时后两车相距51千米?再行几小时两车又相距51千米?
4.甲、乙两人同时从a、b两地相对而行,甲骑车每小时行16千米,乙骑摩托车每小时行65千米。甲离出发点62.4千米处与乙相遇。a、b两地相距多少千米?
5.小张的小王同时分别从甲、乙两村出发,相向而行。步行1小时15分后,小张走了两村间路程的一半还多0.75千米,此时恰好与小王相遇。
小王的速度是每小时3.7千米,小张每小时行多少千米?
6.a、b两地相距20千米,甲、乙两人同时从a地出发去b地。甲骑车每小时行10千米,乙步行每小时行5千米。甲在途中停了一段时间修车。
乙到达b地时,甲比乙落后2千米。甲修车用了多少时间?
7.a、b两地相距1000千米,甲列车从a地开出驶往b地,2小时后,乙列车从b地开出驶往a地,经过4小时与甲列车相遇。已知甲列车比乙列车每小时多行10千米。甲列车每小时行多少千米?
8.小李由乡里到县城办事,每小时行4千米,到预定到达的时间时,离县城还有1.5千米。如果小要每小时走5.
5千米,到预定到达的时间时,又会多走4。5千米。乡里距县城多少千米?
9.a、b两城相距75千米,小红从a向b走,每小时走6.5千米,小明从b地走向a,每小时走6千米。小军骑自行车在小红和小明间联络,小军从a走向b,每小时走15千米。
三人同时动身,小军在途中遇见的小明即折顺往a走,遇见了小红,又折回向b走,再遇见了小明又折回往a走……一直到三人在途中相遇为止。小巧玲珑军共走了多少千米?
10.东、西两镇相距240千米,一辆客车上午8时从东镇开往西镇,一辆货车上午9时从西镇开往东镇,到中午12时,两车恰好在两镇间的中点相遇。如果两车都从上午8时由两地相向开出,速度不变,到上午10时,两车还相距多少千米?
行程问题(二)
本讲主要讲“相遇问题”。
相遇问题一般是指两个物体从两地出发,相向而行,共同行一段路程,直至相遇,这类应用题的基本数量关系是:
总路程=速度和×相遇时间。
这里的“速度和”是指两个物体在单位时间内共同行的路程。
例题与方法:
例1.甲、乙两辆汽车同时从东村、西村之间公路的中点向相反方向行驶,6小时后,甲车到达东村,乙车离西村还有42千米。已知甲车的速度是乙车的2倍。东、西两村之间的公路长多少千米?
例2.一支1800米长的队伍以每分90米的速度行进,队伍前端的联系员用9分的时间跑到队伍末尾传达命令。联络员每分跑多少米?
例3.甲、乙两车相距516千米,两车同时从两地出发丰向而行,乙车行驶6小时后停下修理车子,这时两车相距72千米。甲车保持原速继续前进,经过2小时与乙车相遇。求乙车的速度。
例4.甲、乙两列车同时从a、b两地相对开出,第一次在离a地75千米处相遇。相遇后两列车继续前进,到达目的地后又立刻返回,第二次相遇在离b地55千米处。求a、b两会间的路程。
练习与思考:
1.甲、乙两人分别从东、西两地同时相向而行。2小时后两人相距96千米,5小时后两人相距36千米。东、西两地相距多少千米?
2.甲、乙两人骑车从同一地点向相反方向出发,甲车每小时行13千米,乙车每小时行12千米 。如果甲先行2小时,那么,乙行几小时后两人相距99千米?
3.甲、乙两地相距59千米,汽车行完全程要0.7小时,步行要14小时。一个人从甲地出发,步行1.5小时后改乘汽车,他到达乙地共要几小时 ?
4.甲、乙两车分别从a、b两地同时相向而行。甲车每小时行82千米,乙车每小时行72千米,两车在离中点30千米处相遇。a|b两地相距多少千米?
5.甲、乙两车同时从东、西两地相向开出,甲车每小时行40千米,经过3小时已驶过中点25千米,这时乙车与甲车还相距7千米。求乙车的速度。
6.甲、乙两车同时同地同向行进,甲车每小时行30千米,乙车每小时行的路程是甲车的1.5倍。当乙车行到90千米的地方时立即按原路返回,又行了几小时和甲车相遇?
7.两辆汽车从同一地点向相反方向开出,第一辆汽车每小时行48千米,第二辆汽车每小进行52千米。如果第一辆车先行1.2小时,那么,两辆汽车同时行驶几小时后,它们之间的距离为557.
6千米?
8.一架运输机和一架客机同时从某地起飞相背飞行,2.5小时后两机相距3650千米。已知客机比运输机每小时多飞行100千米,运输机每小时飞行多少千米?
9.a、b两地相距6千米,甲、乙两人分别从a、b两地同时出发在两面三刀地间往返行走(到达另一地后就马上返回),在出发40分后两人么一次相遇。乙到达a地后马上返回,在离a地2千米的地方两面三刀人第二次相遇。求甲、乙两人的速度。
10.客车和货车同时从甲、乙两地相对开出,客车每小时行54千米,货车每小时行48千米。两车相遇后又以原速继续前进,客车到达乙地后立即返回,货车到达甲地后也立即返回,两车在距中点108千米处再以、次相遇。甲、乙两地相距多少千米?
行程问题(三)
本讲的内容是“追及问题”。
追及问题一般是知两个物体同时运动,经过一定时间,后者追上前者的问题。追及问题的基本数量关系是:
速度差 ×追及时间=追及路程。
例题与方法:
例1 中巴车每小时行60千米,小轿车每小时行84千米,两车由同一个车库出发。已知道中巴车先开出,30分钟后小轿车顺着中巴车的路线出发,小轿车经过多少时间能追上中巴车?
例2 甲、乙两车同时、同地出发去同一目的地,甲车每小时行40千米,乙车每小时行35千米。途中甲车因故障修车用了3小时,结果甲车比乙车迟1小时到达目的地。两地间的路程是多少千米?
例3 兄妹两人同时离家去上学,哥哥每分走90米,妹妹每分走60米。哥哥到校门口时,发现忘带课本,立即沿原路回家去取,行到离学校180米处与妹妹向隅,他们呢家离学校有多远?
例4 小华、小丽个小霞三人都要从甲地到乙地,早上6时小华和小丽两人一起从甲地出发一,小华每小时走5千米,小丽每小时走4千米。小霞上午8时才从甲地出发。傍晚6时,小华和小霞同到到达乙地。
小霞是在什么时间追上小丽的?
练习与思考:
1.哥哥放学回家,以每小时6千米的速度步行,18分后,弟弟也从同一所学校放学回家,弟弟骑自行车以每小时15千米的速度追上哥哥。经过几分弟弟可以追上哥哥?
2.两辆卡车为王村送化肥,第一辆以每小时30千米的速度由仓库开往王村,第二辆晚开12分,以每小时40千米的速度由仓库开往王村,结果两车同时到达。仓库到王村的路程有多少千米?
3.好马每天走240里,劣马每分走150里,劣马先走12天,好马几天可以追上劣马?(我国古代算题)
4.小玲每分行100米,小平每分行80米,两人同时同地背向行了5分后,小玲调转方向去追赶小平。小玲追上小平时一共行了多少米?
5.一架飞机从甲地飞往乙地,原计划每分飞行9千米,现在按每分12千米的速度飞行,结果比原计划提前半小时到百叶窗。甲、乙两地相距多少千米?
6.一辆摩托车追前面的汽车,汽车每小时行28千米,摩托车每小时行40千米,摩托车开出4小时后追上汽车。汽车比摩托车早出发几小时?(得数保留一位小数)
7.一支队伍长450米,以每秒1。5米的速度行进。一个战士因画需从排尾赶到排头,并立即返回排尾。如果他的速度是每秒3米,那么,这位战士往返共需多少时间?
8.李华以每小时4千米的速度从学校出发步持到20.4千米以外的冬令营报到,半小时后,营地的老师闻讯前往迎接,老师每小时比李华多走1.2千米。
又过了1.5小时,张明从学校骑车去营地报到,结果三人同时在途中相遇。张明骑车每小时行多少千米?
9.甲、乙两人各骑一辆自行车由同一地点出发,到相隔45千米的某地办事。乙比甲早出发20分,而甲比乙早到45分,甲到达时乙在甲的后面10千米处。甲每小时行多少千米?(得数保留整数)
10.玲玲从家到县城上学,她以每分50米的速度走了2分后,发现按个人速度走下去要迟到8分,于是她加快了速度,每分多走10米,结果到学校时,离上课还有5分。玲玲家到学校的路程是多少米?
行程问题(四)
五年级奥数行程问题
行程问题。有关速度 时间 路程三者之间关系的应用题叫做行程问题,行程问题的主要数量关系是 路程 速度 时间。如果用s表示路程,v表示速度,t表示时间,则上述关系可以用字母表示成 s vt相遇问题一般是指两个物体从两地出发,相向而行,共同走一段路程,直至相遇,这类应用题的基本数量关系式 总路程 速度和...
五年级奥数行程问题
教学目标 学会应用数量关系解决实际问题,提高解决问题的能力。教学目标 学会应用数量关系解决实际问题,提高解决问题的能力。质点型 行程问题就是把运动着的物体看做一个点,而不需要考虑物体自身的长度。例1 小林和小强同时从a b两地相对出发,小林步行每分钟走60米,小强骑自行车的速度是小林的4倍,经过6分...
小学五年级奥数试题行程问题 北大奥数卷
小学五年级奥数试题 行程问题 北大奥数卷 在人们的生活中离不开 行 行 中有三个重要的量 路程 速度 时间。研究这三个量的典型应用题叫做行程问题。这三个量之间的关系可以用下面的公式来表示 路程 速度 时间。速度 路程 时间。时间 路程 速度。相遇问题和追及问题是行程问题的两个重要的类型。相遇问题是指...