五年级数学。
1.一块长1米20厘米,宽90厘米的铝皮,剪成直径30厘米的圆片,最多可以剪几块?
分析:此题不需求面积的。只需求长和宽各是圆的直径的几倍,然后求出长和宽的倍数的积。
1米20厘米=120厘米
4×3=12(块)
答:最多可以剪12块。
2.一个圆柱,底面半径1分米,它的侧面展开是一个正方形。这个圆柱的表面积和体积是多少?
分析:从侧面展开图正方形入手,可知这个圆柱的高是圆柱的底面周长。
圆柱的表面积:
45.7184(平方分米)
圆柱的体积:
19.7192(平方分米)
答:这个圆柱的表面积是45.7184平方分米,体积是19.7192平方分米。
3.一列火车上午8时从甲站开出,到第二天的晚上9时到达乙站。已知火车平均每小时行98千米。甲乙两站间的铁路长多少千米?
分析:这题的解题关键是要知道火车行驶的时间。
24-8+9=25(小时)[或者:12-8+12+9=25(小时)]
2450(千米)
答:甲乙两站间的铁路长2450千米。
4.一个圆和一个扇形的半径相等。已知圆的面积是30平方厘米,扇形的圆心角是72度。求扇形的面积。
分析:因为圆和扇形的半径相等,圆和扇形的面积存要在倍数关系。这个倍数就是它们圆心角之间的倍数关系。
72÷360=1/5,30×1/5=6(平方厘米)
答:扇形的面积是6平方厘米。
第11题:一个半径3厘米的圆,在圆中画一个扇形,使它的面积占圆面积的20%,并且算出这个扇形的面积。
分析:此题与上题的思路一样。
3.14×3×3×20%=5.652(平方厘米)
答:这个扇形的面积是5.652平方厘米。
5.学校把植树任务按5:3分给六年级和五年级。六年级实际栽了108棵,超过原分配任务的20%。原计划五年级栽树多少棵?
分析:六年级原计划栽树的棵数是解题的关键。
1、六年级原计划栽树多少棵?
108÷(1+20%)=108×5/6=90(棵)
2、原计划五年级栽树多少棵?
90÷5×3=54(棵)
综合算式:
54(棵)
答:原计划五年级栽树54棵。
6.甲乙两面个工程队全修一段公路,甲队的工作效率是乙队的3/5。两队合修6天正好完成这段公路的2/3,余下的由乙队单独修,还要几天才能修完?
分析:求两队的工效是解题的关键。
1、两队的工效和是多少?
2、乙队的工效是多少?
3、还要几天才能修完?
24/5(天)
答:还要24/5天才能修完。
7.某水泥厂去年生产水泥232400吨,今年头5个月的产量就等于去年全年的产量。照这样计算,这个水泥厂今年将比去年增产百分之几?
解法一:分析,今年后7个月的产量就是增产的,因此我们要先求出后7个月生产量。
325360(吨)
解法二:把232400吨看作单位“1”,
1、今年平均每月生产量是去年的几分之几?
2、今年比去年增产几分之几?
3、今年比去年增产百分之几?
综合算式:1÷5×(12-5)=1.4=140%
答:这个厂今年比去年增产140%。
8.幼儿园买进大小两种毛巾各40条,共用258.8元。大毛巾的单价比小毛巾单价的2倍多0.11元。这两种毛巾单价各是多少元?
解:设小毛巾的单价是x元,则大毛巾的单价是(2x+0.11)元。
x+(2x+0.11)]×40=258.8
3x=6.47-0.11
x=6.36÷3
x=2.12
2x+0.11=2.12×2+0.11
答:大毛巾的单价是每条4.35元,小毛巾的单价是每条2.12元。
9. 一间长米、宽米的房间,用边长米的正方形瓷砖铺地面,需要768块。在长6米、宽米的房间里,如果用同样的瓷砖来铺,需要多少块?
如果在第一个房间改铺边长米的正方形瓷砖,要用多少块?(用比例解)
分析:房间的面积是一定的,每块砖的面积和块数成反比例。
解:设需要x块。
0.15×0.15x =6×4.8
x =6×4.8÷0.15÷0.15
x =1280
答:需要1280块。
解:设需要y块。
0.2×0.2y=4.8×3.6
y=4.8×3.6÷0.2÷0.2
y=432
答:需要432块。
10.一艘轮船所带的柴油最多可以用6小时。驶出时顺风,每小时行驶30千米。驶回时逆风,每小时行驶的路程是顺风时的4/5。这艘轮船最多驶出多远应往回驶?
分析:轮船行驶的路程一定,每小时行驶的路程和时间成反比例。
解:设这艘轮船逆风行驶了x小时。
30×4/5x=30×(6-x)
4/5x=6-x
9/5x=6
x=10/3
30×4/5×10/3=80(千米)
答:这艘轮船最多驶出80千米就应往回驶。
11. 一辆汽车从甲地开往乙地,第一小时行了全程的1/7,第二小时比第一小时多行了16千米,这时距离乙地还有94千米。甲乙两地的公路长多少千米?
分析:“从第二小时比第一小时多行了16千米”可知第二小时行了全程的1/7和16千米。第一小时和第二小时共行全程的(1/7+1/7)和16千米。
由此可知(96+16)占全程的(1-1/7-1/7)。
根据上面的分析得:
(千米) 答:甲乙两地的公路长千米。
或者用方程解:
解:设甲乙两地的公路长x千米。
1-1/7-1/7)x=96+16
5/7x=112
x 答:甲乙两地的公路长千米。
题目改编:若这题中的一个条件改成“这时距离甲地96千米”,其它条件不变,问题也不变。如何解答?
12.一个编织组,原来30人10天生产1500只花篮。现在增加到80人,按原来的工效,生产6000只花篮需要多少天?(用比例解答)
分析:题中说“按原来的工效”,这说明这个纺织组的工作效率是一定的。工作效率一定,工作总量和工作时间成正比例。
解:设需要x天。
1500:(30×50)=6000:(80×x)
1500×(80×x)=6000×(30×50)
x=6000×30×50÷80÷1500
x=6000÷80
x=75 答:需要75天。
13.红光农场有两块麦田,第一块5.5公顷,共收小麦27.3吨,第二块3.6公顷,共收小麦18.2吨,这两块麦田平均每公顷收小麦多少吨?
14. 一辆汽车在山区行驶,上山用了3小时,平均每小时行30千米,下山行完同样的路程,只用了2小时,求这辆汽车上山,下山的平均速度.
15. 甲乙二人同时从同一地点向相反方向背向而行,甲每小时行驶15千米,乙每小时行驶12千米,4.5小时两人相距多少千米?甲比乙多走多少千米?
16. 服装厂计划做1470套服装,已经做了5天,平均每天做150套,剩下的要4.5天完成,剩下的平均每天比原来每天多做多少套?
17. 每套童装用布2.5米,每套**服装用布4米,现在要做童装5套,**服装3套,共有布30米,还可以剩下多少米布?
如果每条裤子用布1.1米,剩下的这些布可做裤子多少条?
18.超市开展矿泉水“买5送1”的活动。一个旅游团有48人,想每人发一瓶矿泉水,需要购买多少瓶水就够了?
买5送1 的意思是要6瓶矿泉水只需要买5瓶,48里有8个6,所以只需要8个5就可以了,答案是40瓶。)
19. 一个小数部分是两位的小数,用四舍五入法把它精确到0.1,它的近似值是5.0,那么这个两位小数是什么?
解析:所求的两位小数是:4.95,4.96,4.97,4.98,4.99,5.00,5.01,5.02,5.03,5.04
20. 一只底面是正方形的长方体铁箱,如果把它的侧面展开,正好得到一个边长是40cm的正方形.求这只铁箱的容积是多少升?
回答者: cyg2436 - 高级经理七级 1-12 15:16
小学5年级奥数题选
填空题 1.计算:0.02+0.04+0.06+0.08+……19.94+19.96+19.98
2.1×1+2×2+3×3+……1997×1997+1998×1998的个位数字是。
3.一个两位数,在它的两个数字中间添一个0,就比原来的数多630,这样的两位数共有___个。
4.现有壹元的人民币4张,贰元的人民币2张,拾元的人民币3张,如果从中至少取1张,至多取9张,那么,共可以配成___种不同的钱数。
5.一组四位数,每一个数的数字均不为0,并且互不相同,但每个数所有的数字和都为12,将所有这样的四位数从小到大依次排列,第25个数是___
6.大猴给小猴分桃子,如果每只小猴分8个桃子,还剩10桃子;如果每只小猴分9个桃子,那么有一只小猴就分不足9个,但仍可以分到桃子,小
8.有一栋居民楼,每家都订2份不同的报纸,该居民楼共订了三种报纸。其中《南通广播电视报》34份,《扬子晚报》30份,《报刊文摘》22份。
那么,订《扬子晚报》和《报刊文摘》的共有___家。
9.强强、芳芳两人在相距120米的直路上来回跑步,强强每秒跑2米,芳芳每秒跑3米。如果两人同时从两端点出发,那么15分钟内他们共相遇___次。
10.某车间加工一批零件,计划每天加工48个,实际每天比计划多加工12个,结果提前5天完成任务。这批零件共有___个。
五年级数学奥数竞赛
班级 姓名 一 我会填。1.四位数 3aa1 是9的倍数,那么a 2.在 25 79这个数的 内填上一个数字,使这个数能被11整除,方格内应填 3.在1992后面补上三个数字,组成一个七位数,使它们分别能被 整除,这个七位数最小值是 4.用105个大小相同的正方形拼成一个长方形,有 种不同的拼法。5...
五年级数学奥数题
1.有一些糖,每人分5块多10块 如果现有的人数增加到原人数的1.5倍,那么每人4块就少2块。问这些糖共有多少块?分析与解 方法一 设开始共有x人,两种分法的糖总数不变,有5x 10 4 1.5x 2,解得x 12,所以这些糖共有12 5 10 70块 方法二 人数增加1.5倍后,每人分4块,相当于...
五年级数学奥数题
1.有一座桥,过桥需要先上坡,再走一段平路,最后下坡,并且上坡 平路及下坡的路程相等。某人骑电动车过桥时,上坡 走平路和下坡的速度分别为11米 秒 22米 秒和33米 秒,求他过桥的平均速度。解析 假设上坡 平路及下坡的路程均为66米,那么总时间 66 11 66 22 66 33 6 3 2 11...