提公因式法。
一、 教材分析:
(一)教材所处的地位。
学习分解因式一是为解高次方程作准备,二是学习对于代数式变形的能力,从中体会分解的思想、逆向思考的作用。它不仅是现阶段学生学习的重点内容,而且也是学生后续学习的重要基础。本章教材是在学生学习了整式运算的基础上提出来的,事实上,它是整式乘法的逆向运用,与整式乘法运算有密切的联系.分解因式的变形不仅体现了一种“化归”的思想,而且也是解决后续——分式化简、解方程、恒等变形等学习的基础,为数学交流提供了有效的途径.分解因式这一章在整个教材中起到了承上启下的作用。
(二)根据课程标准,本课的教学目标是:
a:知识目标:
1、经历探索分解因式方法的过程,体会数学知识之间的整体(整式乘法与因式分解)联系。
2、了解因式分解的意义,会用提公因式法进行因式分解。
b:能力目标:
经历探索多项式各项公因式的过程,并在具体问题中,能确定多项式各项的公因式;会用提公因式法把多项式分解因式(多项式中的字母指数仅限于正整数的情况);进一步了解分解因式的意义,加强学生的直觉思维并渗透化归的思想方法 c:情感目标: 培养学生独立思考的习惯,同时又要培养大家合作交流意识。
二、本课内容及重点、难点分析:
根据《标准》的要求,本章教材介绍了最基本的分解因式的方法:提公因式法和应用公式法.每一节课的引入,立足渗透类比这种重要的思想方法.通过如类比因数分解的意义导入因式分解的意义等.另外本章的设计多以问题串的形式创设问题情境,如观察多项式x2- 25和9x2- y2,它们有什么共同特征?能否将它们分别写成两个因式的乘积?
与同伴交流你的想法等,让学生经历观察、发现、类比、归纳、总结、反思的过程,感受整式乘法与因式分解之间的互逆变形关系,发展学生有条理的思考及语言表达能力。
3、教学重点、难点。
根据八年级学生的认知规律和知识基础,结合本节课的内容以及新课程标准确定本节课的重点为:
1)学生能确定多项式中各项的公因式;
2)学生能用提公因式法把多项式分解因式。
难点为:正确找出多项式中各项的公因式及提公因式后另一个因式的确定。
二、学情分析。
学情是教师确定教学重点,难点,选择教学方法和手段的依据,本节课学情主要有:
1、学生已经学习了整式乘法及因式分解的意义,有了初步的逆变形思维具备一定的分析、判断和运用法则的意义,对乘法的分配律也得到了进一步的理解。
2、八年级学生好奇心强,对新内容感兴趣,但学习急于求成,同时主动性和目地性不够明确,学习方法还比较欠缺,特别是符号问题,这对学生学习本节课内容带来一定的难度,因此,在教学中教师要对他们进行学法指导,尤其要对他们进行数学学习方法和数学思想的培养。
三 、教学方法分析。
根据本节课内容,遵循学生认知规律和心理特点,为了突出重点,突破难点,培养学生的创新能力,我采用演示、讨论、观察、比较、概括等多种方法交叉教学,利用多**辅助教学,呈现知识的形成过程,充分调动多种感官参与教学,激发学生学习的兴趣,使数学教学成为学生“探索、发现、再发现、创造”的过程。
四、学法分析。
教学的矛盾主要是解决学生的学,“学”是中心,“会”是目的。因此,在教学过程中,我通过创设问题的情境,以激发学生“乐学”;启发诱导,以指导学生“会学”;变式训练,以引导学生“活学”;引导学生反思自己的分析过程,以指导学生“善学”。使学生通过观察、比较、分析、概括等一系列思维训练,不断提高学习数学的**意识和创新能力。
五、教学过程。
本节课的教学过程由五个环节组成:
一)创设情境,导入新课;
二)师生合作,**新知;
三)反馈练习,巩固新知;
四)引导小结,巩固提高;
五)布置作业,形成技能。教学过程设计:
一、复习提问。
乘法对加法的分配律.
二、新课。1.新课引入:用类比的方法引入课题.
在学习分数时,我们常常要进行约分与通分,因此常常要把一个数分解因数(即分解约数).例如,把12分解成3×4,把6分解成2×3。 在第七章我们学习了整式的乘法,几个整式相乘可以化成一个多项式,那么一个多项式如何化成几个整式乘积的形式呢?这一章就是学习如何把一个多项式化成几个整式的积的方法.
2.因式分解的概念:
1.分析讨论,**新知. 出示投影片。
把下列多项式写成整式的乘积的形式。
(1)x2+x
(2)x2-1
(3)am+bm+cm
[生]根据整式乘法和逆向思维原理,可以做如下计算:
(1)x2+x=x(x+1)
(2)x2-1=(x+1)(x-1)
(3)am+bm+cm=m(a+b+c)
[师]像这种把一个多项式化成几个整式的积的形式的变形叫做把这个多项式因式分解,也叫把这个多项式分解因式.可以看出因式分解是整式乘法的相反方向的变形,所以需要逆向思维. 再观察上面的第(1)题和第(3)题,你能发现什么特点. [生]我发现(1)中各项都有一个公共的因式x,(2)中各项都有一个公共因式m,是不是可以叫这些公共因式为各自多项式的公因式呢? [师]你分析得合情合理. 因为ma+mb+mc=m(a+b+c).
于是就把ma+mb+mc分解成两个因式乘积的形式,其中一个因式是各项的公因式m,另一个因式a+b+c是ma+mb+mc除以m所得的商,像这种分解因式的方法叫做提公因式法.
2.例题教学,运用新知.
出示投影片:
[例1]把8a3b2-12ab3c分解因式.
例2]把2a(b+c)-3(b+c)分解因式.
[例1]分析:先找出8a3b2与12ab3c的公因式,再提出公因式.我们看这两项的系数8与12,它们的最大公约数是4,两项的字母部分a3b2与ab3c都含有字母a和b.其中a的最低次数是1,b的最低次数是2.我们选定4ab2为要提出的公因式.提出公因式4ab2后,另一个因式2a2+3bc就不再有公因式了.
解:8a3b2+12ab2c=4ab2·2a2+4ab2·3bc=4ab2(2a2+3bc).
总结:提取公因式后,要满足另一个因式不再有公因式才行.可以概括为一句话:括号里面分到“底”,这里的底是不能再分解为止.
[例2]分析:(b+c)是这两个式子的公因式,可以直接提出.这就是说,公因式可以是单项式,也可以是多项式,是多项式时应整体考虑直接提出. 解:2a(b+c)-3(b+c)=(b+c)(2a-3).
诊断:(1)小明解的有误吗?把12x2y+18xy2分解因式。
解: 原式 =3xy(4x + 6y)
正确解:原式=6xy(2x+3y)
注意:公因式要提尽。
2)小亮解的有误吗?把3x2 - 6xy+x分解因式。
解:原式 =x(3x-6y)
正确解:原式= =x(3x-6y+1)
注意:某项提出莫漏1。
3)小华解的有误吗?把 - x2+xy-xz分解因式。
解:原式= -x(x+y-z)
正确解:原式= -x2-xy+xz) =x(x-y+z)
人教版八年级上册数学教案 14 4 3公式法
14.4.3公式法 一 教学目标1 知识与技能。会应用平方差公式进行因式分解,发展学生推理能力 2 过程与方法。经历探索利用平方差公式进行因式分解的过程,发展学生的逆向思维,感受数学知识的完整性 3 情感 态度与价值观。培养学生良好的互动交流的习惯,体会数学在实际问题中的应用价值 重 难点与关键。1...
人教版八年级数学导学案14 3 1提公因式法
14.3因式分解。14.3.1 提公因式法。一 新课导入。1.导入课题 我们知道,利用整式的乘法运算,可以将几个整式的积化为一个多项式的形式,反过来,能不能将一个多项式化成几个整式的积的形式呢?若能,这种变形叫做什么呢?这节课,我们一起来讨论这个问题。2.学习目标 1 知道因式分解的意义。2 会用提...
八年级上册数学教案人教版
第十一章全等三角形 全等三角形。教学内容。本节课主要介绍全等三角形的概念和性质 教学目标。1 知识与技能。领会全等三角形对应边和对应角相等的有关概念 2 过程与方法。经历探索全等三角形性质的过程,能在全等三角形中正确找出对应边 对应角 3 情感 态度与价值观。培养观察 操作 分析能力,体会全等三角形...