九年级数学《成比例线段》的教案设计。
九年级数学《成比例线段》的教案设计。
知识与技能】
了解平行线分线段成比例定理的证明,掌握定理的内容。能应用定理证明线段成比例等问题,并会进行有关的计算。
过程与方法】
通过定理的推导证明与应用,培养学生探索新知识、提高分析问题和解决问题的能力,提高学生的识图能力和发散思维能力,以及现有知识向新知识迁移的能力。
情感态度】通过定理的学习知道认识事物的一般规律是从特殊到一般,并能欣赏数学表达式的对称美。
教学重点】定理的应用。
教学难点】定理的推导证明。
一、情境导入,初步认识。
问题1翻开我们的作业本,每一页都是由一些间距相等的平行线组成的,如图在作业本上任意画一条直线与相邻的三条平行线交于a、b、c三点,得到两条线段ab、bc,量一量,你发现这两条线段的长度有什么关系?
相等即ab=bc(由学生回答)
思考:再任意画一条直线n与这组平行线相交,得到两条线段de和ef,你发现de与ef的长度存在什么关系?
由此,我们可以得到。
问题2选择作业本上不相邻的三条平行线,任意画、n与它们相交,如果、n这两条直线平行,观察并思考这时所得的`ad、db、fe、ec这四条线段的长度有什么关系。如果、n这两条直线不平行,你再观察一下,量一量,算一算,看看它们是否存在类似关系。
归纳:.两条直线被一组平行线所截,所得的对应线段成比例。(简称“平行线分线段成比例”)
二、思考**,获取新知。
思考:(1)如图,当图(3)中的点a与点f重合时就形成一个三角形的特殊情况,此时,ad、db、ae、ec这四条线段之间会有怎样的关系?
2)如图,当图(3)中的直线、n相交于第二条平行上某点时,是否也有类似的成比例线段呢?
归纳:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例。
例1如图,l1∥l2∥l3.
1)已知ab=3,de=2,ef=4,求bc;
2)已知ac=8,de=2,ef=3,求ab.
三、运用新知,深化理解。
1.如图,已知l1∥l2∥l3,下列比例式中错误的是()
2.如图,已知l1∥l2∥l3,下列比例式中成立的是()
答案】 教学说明】可由学生独立完成抢答,教师最后点拨。
四、师生互动,课堂小结。
1.平行线分线段成比例定理及其推论,注意“对应”的含义。
2.研究问题的方法:从特殊到一般,类比联想。
1.布置作业:从教材相应练习和“习题23.1”中选取。
2.完成《创优作业》中本课时练习的“课时作业”部分。
本课时从学生所熟知的作业本入手,通过学生动手画图,测量、观察思考发现规律,归纳总结并加以应用,体会从特殊到一般的数学思维过程,进一步培养学生类比的数学思想。
九年级数学成比例线段 教学设计
一 教材分析。教科书在学生认识线段的比的基础上,进一步提出了本节课的具体要求 理解并掌握比例的基本性质及其简单应用。学好了本节课,既承接了全等三角形的内容,又为本章的后续学习相似三角形和相似多边形奠定了基础。二 章节目标。在知识技能方面,要求学生了解线段的比和成比例线段 理解并掌握比例的基本性质及其...
九年级数学成比例线段章节习题
姓名 一 填空题 1.若4x 5y,则x y2.若 则。3.已知 则的值为4.已知 那么。5.若 3,且b d f 4,则a c e 6.若 x y y 8 3,则x y7.若 那么。8.等腰直角三角形中,一直角边与斜边的比是。9.已知 abc和 a b c 且a b b c c a 16cm.则a...
九年级数学测验 比例线段
九年级数学测验 一 一 填空题 每题3分,共36分 1 如果,且y 0,那么。2 已知,若,则。3 如果线段,且是和的比例中项,则。4 已知两地的实际距离为200米,画在图上的距离 图距 为1厘米,在这样的地图上,图距为16厘米的两地间的实际距离为米 5 已知两个三角形是相似形,其中一个三角形的两个...