动量定理的应用

发布 2022-09-14 12:48:28 阅读 3085

高考物理知识点复习之动量定理的六种应用。

动量定理是力对时间的积累效应,使物体的动量发生改变,适用的范围很广,它的研究对象可以是单个物体,也可以是物体系;它不仅适用于恒力情形,而且也适用于变力情形,尤其在解决作用时间短、作用力大小随时间变化的打击、碰撞等问题时,动量定理要比牛顿定律方便得多,本文试从几个角度谈动量定理的应用。

[一、 用动量定理解释生活中的现象]

[例 1] 竖立放置的粉笔压在纸条的一端。要想把纸条从粉笔下抽出,又要保证粉笔不倒,应该缓缓、小心地将纸条抽出,还是快速将纸条抽出?说明理由。

[解析] 纸条从粉笔下抽出,粉笔受到纸条对它的滑动摩擦力μmg作用,方向沿着纸条抽出的方向。不论纸条是快速抽出,还是缓缓抽出,粉笔在水平方向受到的摩擦力的大小不变。在纸条抽出过程中,粉笔受到摩擦力的作用时间用t表示,粉笔受到摩擦力的冲量为μmgt,粉笔原来静止,初动量为零,粉笔的末动量用mv表示。

根据动量定理有:μmgt=mv。

如果缓慢抽出纸条,纸条对粉笔的作用时间比较长,粉笔受到纸条对它摩擦力的冲量就比较大,粉笔动量的改变也比较大,粉笔的底端就获得了一定的速度。由于惯性,粉笔上端还没有来得及运动,粉笔就倒了。

如果在极短的时间内把纸条抽出,纸条对粉笔的摩擦力冲量极小,粉笔的动量几乎不变。粉笔的动量改变得极小,粉笔几乎不动,粉笔也不会倒下。

[二、 用动量定理解曲线运动问题]

[例 2] 以速度v0 水平抛出一个质量为1 kg的物体,若在抛出后5 s未落地且未与其它物体相碰,求它在5 s内的动量的变化。(g=10 m/s2)。

[解析] 此题若求出末动量,再求它与初动量的矢量差,则极为繁琐。由于平抛出去的物体只受重力且为恒力,故所求动量的变化等于重力的冲量。则。

δp=ft=mgt=1×10×5=50 kg·m / s。

[点评] ①运用δp=mv-mv0求δp时,初、末速度必须在同一直线上,若不在同一直线,需考虑运用矢量法则或动量定理δp=ft求解δp.②用i=f·t求冲量,f必须是恒力,若f是变力,需用动量定理i=δp求解i。

[三、 用动量定理解决打击、碰撞问题]

打击、碰撞过程中的相互作用力,一般不是恒力,用动量定理可只讨论初、末状态的动量和作用力的冲量,不必讨论每一瞬时力的大小和加速度大小问题。

[例 3] 蹦床是运动员在一张绷紧的弹性网上蹦跳、翻滚并做各种空中动作的运动项目。一个质量为60 kg的运动员,从离水平网面3.2 m高处自由落下,触网后沿竖直方向蹦回到离水平网面1.

8 m高处。已知运动员与网接触的时间为1.4 s.

试求网对运动员的平均冲击力。(取g=10 m/s2)

[解析] 将运动员看成质量为m的质点,从高h1处下落,刚接触网时速度方向向下,大小 。

弹跳后到达的高度为h2,刚离网时速度方向向上,大小,接触过程中运动员受到向下的重力mg和网对其向上的弹力f.选取竖直向上为正方向,由动量定理得: 。

由以上三式解得:,代入数值得: f=1.2×103 n。

加入收藏 分享到: qq空间新浪微博腾讯微博人人网

[四、 用动量定理解决连续流体的作用问题]

在日常生活和生产中,常涉及流体的连续相互作用问题,用常规的分析方法很难奏效。若构建柱体微元模型应用动量定理分析求解,则曲径通幽,“柳暗花明又一村”。

[[例 4]] 有一宇宙飞船以v=10 km/s在太空中飞行,突然进入一密度为ρ=1×10-7 kg/m3的微陨石尘区,假设微陨石尘与飞船碰撞后即附着在飞船上。欲使飞船保持原速度不变,试求飞船的助推器的助推力应增大为多少?(已知飞船的正横截面积s=2 m2)

[解析] 选在时间δt内与飞船碰撞的微陨石尘为研究对象,其质量应等于底面积为s,高为vδt的直柱体内微陨石尘的质量,即m=ρsvδt,初动量为0,末动量为mv.设飞船对微陨石的作用力为f,由动量定理得, 则 。

根据牛顿第三定律可知,微陨石对飞船的撞击力大小也等于20 n.因此,飞船要保持原速度匀速飞行,助推器的推力应增大20 n。

[五、 动量定理的应用可扩展到全过程]

物体在不同阶段受力情况不同,各力可以先后产生冲量,运用动量定理,就不用考虑运动的细节,可“一网打尽”,干净利索。

[[例 5]] 质量为m的物体静止放在足够大的水平桌面上,物体与桌面的动摩擦因数为μ,有一水平恒力f作用在物体上,使之加速前进,经t1 s撤去力f后,物体减速前进直至静止,问:物体运动的总时间有多长?

[[解析]] 本题若运用牛顿定律解决则过程较为繁琐,运用动量定理则可一气呵成,一目了然。由于全过程初、末状态动量为零,对全过程运用动量定理,有故。

[点评] 本题同学们可以尝试运用牛顿定律来求解,以求掌握一题多解的方法,同时比较不同方法各自的特点,这对今后的学习会有较大的帮助。

[六、 动量定理的应用可扩展到物体系]

尽管系统内各物体的运动情况不同,但各物体所受冲量之和仍等于各物体总动量的变化量。

[[例 6]] 质量为m的金属块和质量为m的木块通过细线连在一起,从静止开始以加速度a在水中下沉,经时间t1,细线断裂,金属块和木块分离,再经过时间t2木块停止下沉,此时金属块的速度多大?(已知此时金属块还没有碰到底面。)

[[解析]] 金属块和木块作为一个系统,整个过程系统受到重力和浮力的冲量作用,设金属块和木块的浮力分别为f浮m和f浮m,木块停止时金属块的速度为vm,取竖直向下的方向为正方向,对全过程运用动量定理得 ①

细线断裂前对系统分析受力有, ②联立①②得 。

综上,动量定量的应用非常广泛。仔细地理解动量定理的物理意义,潜心地**它的典型应用,对于我们深入理解有关的知识、感悟方法,提高运用所学知识和方法分析解决实际问题的能力很有帮助。

动量定理的应用

1.应用动量定理解题的基本方法。1 动量定理反映了冲量的作用效果是使物体动量发生变化,并非产生了动量,也。不能认为合外力的冲量就是动量的变换。合外力的冲量是引起物体状态变化的。外在因素,而动量的变化是合外力冲量变化后的必然结果。2 动量定理是利用牛顿第二定律和运动学公式在恒力条件下推导出来的。一般来...

动量定理的应用

1 如图,一恒力f与水平方向夹角为 作用在置于光滑水平面质量为m的物体上,作用时间为t,则力f的冲量为 a ft b mgt c fcos t d mg fsin t 2 a b两球质量相等,a球竖直上抛,b球平抛,两球在运动中空气阻力不计,则下述说法中正确的是 a 相同时间内,动量的变化大小相等,...

动量定理的应用

一 教学目标。1 通过例题分析,使学生掌握使用动量定理时要注意 1 对物体进行受力分析 2 解题时注意选取正方向 3 选取使用动量定理的范围。2 通过对演示实验的分析,培养学生使用物理规律有条理地解释物理现象的能力。二 重点 难点分析。动量定理的应用,是本节的重点。动量 冲量的方向问题,是使用动量定...