数学思想方法作业

发布 2022-07-03 12:23:28 阅读 5139

第一章——第四章)

一、 简答题。

1. 分别简单叙说算术与代数的解题方法基本思想,并且比较它们的区别。

答:算术解题方法的基本思想:首先要围绕所求的数量,收集和整理各种已知的数据,并依据问题的条件列出关于这些具体数据的算式,然后通过四则运算求得算式的结果。

代数解题方法的基本思想是,首先依据问题的条件组成内含已知数和未知数的代数式,并按等量关系列出方程,然后通过对方程进行恒等变换求出未知数的值。

它们区别在于算术解题参与的量必须是已经的量,而代数解题允许未知的量参与运算;算术方法的关键之处是列算式,而代数方法的关键之处列方程。

2. 比较决定性现象和随机现象的特点,简单叙说确定数学的局限。

答:人们常常遇到两类截然不同的现象,一类是决定性现象,另一类是随机现象。

决定性现象的特点是:在一定的条件下,其结果可以唯一确定。因此决定性现象的条件和结果之间存在着必然的联系,所以事先可以预知结果如何。

随机现象的特点是:在一定的条件下,可能发生某种结果,也可能不发生某种结果。对于这类现象,由于条件和结果之间不存在必然性联系。

在数学学科中,人们常常把研究决定性现象数量规律的那些数学分支称为确定数学。用这些的分支来定量地描述某些决定性现象的运动和变化过程,从而确定结果。

但是由于随机现象条件和结果之间不存在必然性联系,因此不能用确定数学来加以定量描述。同时确定数学也无法定量地揭示大量同类随机现象中所蕴涵的规律性。这些是确定数学的局限所在。

二、论述题。

1. 简单说明社会科学数学化的主要原因?

答:从整个科学发展趋势来看,社会科学的数学化也是必然的趋势,其主要原因可以归结为有下面四个方面:

第一,社会管理需要精确化的定量依据,这是促使社会科学数学化的最根本的因素。

第二,社会科学的各分支逐步走向成熟,社会科学理论体系的发展也需要精确化。

第三,随着数学的进一步发展,它出现了一些适合研究社会历史现象的新的数学分支。

第四,电子计算机的发展与应用,使非常复杂社会现象经过量化后可以进行数值处理。

2、论述数学的三次危机对数学发展的作用。

公元前5世纪,古希腊的毕达哥拉斯学派的希帕索斯,发现了等腰直角三角形的直角边与斜边不可通约。因此在当时它就直接导致了认识上的“危机”,从而产生了数学第一次危机。数学史上把18世纪微积分诞生以来在数学界出现的混乱局面叫做数学的第二次危机。

集合论悖论的出现引起了数学界的争论,同时又伴随出现了尖锐的哲学思想的论争。这就是一般称作的第三次数学危机。

第一次数学危机的产物——公理几何与逻辑的诞生。

第二次数学危机的产物——分析基础理论的完善与集合论的创立。

第三次数学危机的产物——数理逻辑的发展与一批现代数学的产生。

二、 分析题。

1、分析《几何原本》思想方法的特点,为什么?

答:(1)封闭的演绎体系。

因为在《几何原本》中,除了推导时所需要的逻辑规则外,每个定理的证明所采用的论据均是公设、公理或前面已经证明过的定理,并且引入的概念(除原始概念)也基本上是符合逻辑上对概念下定义的要求,原则上不再依赖其它东西。因此《几何原本》是一个封闭的演绎体系。

另外,《几何原本》的理论体系回避任何与社会生产现实生活有关的应用问题,因此对于社会生活的各个领域来说,它也是封闭的。

所以,《几何原本》是一个封闭的演绎体系。

(2)抽象化的内容。

《几何原本》中研究的对象都是抽象的概念和命题,它所**的是这些概念和命题之间的逻辑关系,不讨论这些概念和命题与社会生活之间的关系,也不考察这些数学模型所由之产生的现实原型。因此《几何原本》的内容是抽象的。

(3)公理化的方法。

《几何原本》的第一篇中开头5个公设和5个公理,是全书其它命题证明的基本前提,接着给出23个定义,然后再逐步引入和证明定理。定理的引入是有序的,在一个定理的证明中,允许采用的论据只有公设和公理与前面已经证明过的定理。以后各篇除了不再给出公设和公理外也都照此办理。

这种处理知识体系与表述方法就是公理化方法。

2、分析《九章算术》思想方法的特点,为什么?

答:(1)开放的归纳体系。

从《九章算术》的内容可以看出,它是以应用问题解法集成的体例编纂而成的书,因此它是一个与社会实践紧密联系的开放体系。

在《九章算术》中通常是先举出一些问题,从中归纳出某一类问题的一般解法;再把各类算法综合起来,得到解决该领域中各种问题的方法;最后,把解决各领域中问题的数学方法全部综合起来,就得到整个《九章算术》。

另外该书还按解决问题的不同数学方法进行归纳,从这些方法中提炼出数学模型,最后再以数学模型立章写入《九章算术》。

因此,《九章算术》是一个开放的归纳体系。

(2)算法化的内容。

《九章算术》在每一章内先列举若干个实际问题,并对每个问题都给出答案,然后再给出“术”,作为一类问题的共同解法。因此,内容的算法化是《九章算术》思想方法上的特点之一。

(3)模型化的方法。

《九章算术》各章都是先从相应的社会实践中选择具有典型意义的现实原型,并把它们表述成问题,然后通过“术”使其转化为数学模型。当然有的章采取的是由数学模型到原型的过程,即先给出数学模型,然后再举出可以应用的原型。

2019高考数学解题方法攻略思想方法理

数学思想方法。知识网络构建。考情分析 数学思想方法是对数学知识最高层次的提炼与概括,数学思想方法较之数学知识具有更高的层次,具有理性的地位,它是一种数学意识,属于思维和能力的范畴,它是数学知识的精髓,是知识转化为能力的桥梁 高考中把函数与方程的思想作为数学思想方法的重点进行考查,通过选择题和填空题考...

掌握数学建模,感悟数学思想方法 2

难点 把实际问题抽象为数学问题,建立合适的数学模型,探索解决问题的有效方法。4 教学设备或教辅工具 多 三角板 计算器。5 教学思路 观察操作 概括归纳 应用提高。二 教学过程。一 温故知新 1 直角三角形的理论依据 提问学生 三边之间关系 角之间关系 a b 90 边角之间关系 sina cosb...

中考考点思想方法

中考复习 数学思想方法。1 数形结合思想。数 与 形 是数学教学中既有区别又有联系的两个对象。数形结合思想是将抽象的数量关系与直观的图形结合起来,通过 形 来直观地表达 数 或是通过 数 来精确地确定 形 在数学中考中,突出数形结合思想,将抽象的数量关系形象化,具有直观性强 易理解 易接受 易解答 ...