一、选择题。
1.若,则函数的两个零点分别位于区间( )
a.和内 b.和内
c.和内 d.和内。
2 .函数的大致图像是( )
3.设函数(,为自然对数的底数).若曲线上存在使得,则的取值范围是( )
abcd)4.已知函数,若||≥则的取值范围是。
a. b. c. d.
5.已知为正实数,则。
abcd.6.在如图所示的锐角三角形空地中, 欲建一个面积不小于300m2的内接矩形花园(阴影部分), 则其边长x(单位m)的取值范围是。
a) [15,20] (b) [12,25] (c) [10,30] (d) [20,30]
7. 的最大值为( )
a.9 bcd.
8.函数的图像与函数的图像的交点个数为。
a.3b.2c.1d.0
9.函数的图象大致是( )
10.已知函数设表示中的较大值,表示中的较小值,记得最小值为得最小值为,则。
a) (b) (cd)
11.若函数有极值点,且,则关于的方程的不同实根个数是。
a)3b)4 (c) 5 (d)6
12.函数的零点个数为(a) 1 (b) 2 (c) 3 (d) 4
13.函数f(x)的图象向右平移1个单位长度,所得图象与y=ex关于y轴对称,则f(x)=
a. b. c. d.
14.若函数在是增函数,则的取值范围是。
ab) (cd)
二、填空题。
15.方程的实数解为___
16.若函数=的图像关于直线对称,则的最大值是___
17.设函数。
1)记集合,则所对应的的零点的取值集合为___
2)若___写出所有正确结论的序号)
若。三、解答题。
18.设函数,其中,区间。
ⅰ)求的长度(注:区间的长度定义为);
ⅱ)给定常数,当时,求长度的最小值。
19.已知真命题:“函数的图像关于点成中心对称图形”的充要条件为“函数是奇函数”.
1)将函数的图像向左平移1个单位,再向上平移2个单位,求此时图像对应的函数解析式,并利用题设中的真命题求函数图像对称中心的坐标;
2)求函数图像对称中心的坐标;
3)已知命题:“函数的图像关于某直线成轴对称图像”的充要条件为“存在实数a和b,使得函数是偶函数”.判断该命题的真假。
如果是真命题,请给予证明;如果是假命题,请说明理由,并类比题设的真命题对它进行修改,使之成为真命题(不必证明).
新课标人教A版高一数学必修1知识点总结
高中数学必修1知识点。第一章集合与函数概念。一 集合有关概念 1 集合的含义 某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。2 集合的中元素的三个特性 1 元素的确定性 2 元素的互异性 3 元素的无序性。说明 1 对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这...
新课标人教A版高一数学必修1知识点总结
第二轮拔河比赛记录表。下午第二节课 高一男子队 1 第一场 高一 3 班 高一 1 班比赛结果 胜出队 班。2 第二场 高一 2 班 高一 4 班比赛结果 胜出队 班。3 第三场 高一 9 班 高一 12 班比赛结果 胜出队 班。高一女子队 1 第一场 高一 12 班 高一 5 班比赛结果 胜出队 ...
新课标人教A版数学必修五 B
第一章解三角形。1.1 正弦定理和余弦定理 1.1.1 正弦定理 从容说课。本章内容是处理三角形中的边角关系,与初中学习的三角形的边与角的基本关系有密切的联系,与已知三角形的边和角相等判定三角形全等的知识也有着密切的联系 教科书在引入正弦定理内容时,让学生从已有的几何知识出发,提出 性问题 在任意三...