高考数学复习的重要题型分析

发布 2021-04-30 10:00:28 阅读 8155

一、三角函数题。

注意归一公式、诱导公式的正确性(转化成同名同角三角函数时,套用归一公式、诱导公式(奇变、偶不变;符号看象限)时,很容易因为粗心,导致错误!一着不慎,满盘皆输!)。二、数列题。

1.证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列;2.最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。

利用上假设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证;

3.证明不等式时,有时构造函数,利用函数单调性很简单(所以要有构造函数的意识)。三、立体几何题。

1.证明线面位置关系,一般不需要去建系,更简单;2.求异面直线所成的角、线面角、二面角、存在性问题、

第1页。几何体的高、表面积、体积等问题时,最好要建系;3.注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系(符号问题、钝角、锐角问题)。四、概率问题。

1.搞清随机试验包含的所有基本事件和所求事件包含的基本事件的个数;

2.搞清是什么概率模型,套用哪个公式;3.记准均值、方差、标准差公式;

4.求概率时,正难则反(根据p1+p2+..pn=1);5.注意计数时利用列举、树图等基本方法;6.注意放回抽样,不放回抽样;

7.注意零散的的知识点(茎叶图,频率分布直方图、分层抽样等)在大题中的渗透;8.注意条件概率公式;

9.注意平均分组、不完全平均分组问题。五、圆锥曲线问题。

1.注意求轨迹方程时,从三种曲线(椭圆、双曲线、抛物线)着想,椭圆考得最多,方法上有直接法、定义法、交轨法、参数法、待定系数法;

2.注意直线的设法(法1分有斜率,没斜率;法2设x=my+b(斜率不为零时),知道弦中点时,往往用点差法);注意判别式;注意韦达定理;注意弦长公式;注意自变量的取值。

第2页。范围等等;

3.战术上整体思路要保7分,争9分,想12分。六、导数、极值、最值、不等式恒成立(或逆用求参)问题。

1.先求函数的定义域,正确求出导数,特别是复合函数的导数,单调区间一般不能并,用和或,隔开(知函数求单调区间,不带等号;知单调性,求参数范围,带等号);2.注意最后一问有应用前面结论的意识;3.

注意分论讨论的思想;

4.不等式问题有构造函数的意识;

5.恒成立问题(分离常数法、利用函数图像与根的分布法、求函数最值法);

6.整体思路上保6分,争10分,想14分。高考数学的计划制定。

一、把握高考形势,确定高三数学复习的计划我们知道,目前的高考在不断改革,高考形势也在不断变化,那么我们心中要有明确的认识,清楚的知道高考要考什么,我们要如何应对高考。2023年四川高考所有科目将回归使用全国卷,这意味着我们在复习时要根据全国卷命题规律来有针对性的复习。

观察15全国卷高考,与四川卷最大的不同在于数列的大题没有了,后面多了三个选作题,学生选作一题,选做题。

第3页。中对以前没有重点学习的极坐标有了考察。

高三的数学复习计划大致分为三个阶段,有着不同的任务、目标和学习方法。

第一阶段是高三第一学期的数学基础复习。我们应该与学校老师的复习安排大体一致,即一轮复习主要是跟着老师进度走,尽量把所有的高考知识点做到毫无遗漏的复习,强调细节,掌握好基础知识。

第二阶段是高三第二学期前半部分的数学系统复习,即二轮复习。我们要把数学的几大分支,如函数、三角、数列、解析几何等知识进行系统化、条理化。对整个数学考点进行梳理,并发现自己的问题,针对性的查漏补缺。

第三阶段是考前一两个月的数学综合复习,即冲刺阶段。我们应该要懂得文武之道,一张一弛,在加强模拟训练,提高考试技巧的同时也要调节自己的学习和生活节奏,调整好心态来迎接高考。

二、坚定信心,落实好整个数学复习计划。

高三是一个快节奏,大运动量的学习生活阶段,我们需要有条不紊的落实好复习计划,提高学习效率。期中最重要的是坚定信心,哪怕数学基础比较差,也要相信经过高三一年的努力,高考同样会出现奇迹的。只是我们需要充满信心,脚踏实地,多做解题反思,日积月累,水到渠成。

高中数学的课堂笔记的记法。

第4页。随堂笔记顾名思义就是记录课堂上的重要内容。在习题课中,老师所讲的例题都是有针对性和代表性的,它们能反映相关知识点的应用方法或特殊的解题技巧。

我们在记笔记时,不要照抄老师的解题过程,只须把例题抄下来,笔记本上留适当的空隙,不要因为抄答案而影响听讲。课堂上要专心思考老师的提问或听老师的讲解,要注意老师所强调的知识点的用法或解题技巧。等下课后,自己再抽时间把的详细步骤独立地做在笔记上,并对每个例题做一个总结。

要总结到例题中某知识点的用法,此类型题目的解法,还有一些特殊技巧等。只有这样,例题的功能才可体现出来。在试题(或练习)讲评课中,有的题目具有独特的技巧,有的题目反映某个知识点的特殊用法,这都是我们要记录的。

另外,还有一部分题目,其本身就是一个公式或是一个规律性的结论,我们姑且把它们叫做二类公式或二类定理。我们不仅要把它们记录下来,还要熟记它们,可以为我们做题提供更开阔的视野,至少在做选择题或填空题时,就可以直接应用了。

我们准备的另一个笔记本好题选萃,主要用来登记一些有价值的题目。比如:一份试卷中,你容易出错的题目,技巧性较强的题目,有特色的题目,或你感觉有价值的题目,就要把它们记录到这个本上。

还有你在一些课外读物上遇到的有价值的题目也给登记下来。在登记这些题的过程中,你。

第5页。会加深理解它们,从而记忆深刻。等过一段时间,你再看这些题时,可以检查你对它们所反映知识的掌握情况。一个学期下来,如果你记录的好题都会做,那么你的水平就不一般了。

第6页。

高考数学重要题型

2013北京模拟 已知函数f x xr 则f x 在上的最大值和最小值之和为 例1 09山东 定义在r上的函数f x 既是奇函数,又是周期函数,是它的一个正周期 若将方程在闭区间上的根的个数记为,则可能为 a 0b 1c 3d 5 例2 要得到的图像,只需将的图像 a 向左平移个单位b 向右平移个单...

小升初考试重要题型分析

一。求被除数类。1.同余加余,同差减差。例1.某数被7除余6,被5除余3,被3除余3,求此数最小是多少?解 因为 被5除余3,被3除余3 中余数相同,即都是3 同余 所以要先求满足5和3的最小数 15,15 3 18,18 7 2 4不余6,不对 30 3 7 4 5不余6 不对 15 3 3 7 ...

高考数学题型分析

一 题型分析。2013年数学试卷的难度较2012年数学试卷的难度有所降低,据专家分析2012年的数学试卷是基于高中课改的要求,但由于考生答题不规范,成绩仍不够理想。2013年数学试题的题型与近几年的题型基本相同,理科12个选择题中有8个题比较简单,第6,10,11,12题较难,其中6,10计算量较大...