精品资料欢迎**。
苏教版六年级数学教学设计——认识比。
教学目标:1、使学生在具体情境中理解比的意义,掌握比的读写方法,知道比的各部分名称,会求比值。
2、使学生在活动中培养分析、综合、抽象、概括能力,在解决实际问题的过程中,体会数学与生活的联系,体验数学学习的乐趣。重点:理解比的意义难点:
理解比的意义教学准备:多**课件教学过程:
一、教学例题1,初步认识比(一)复习导入。
1)呈现例1图(2杯果汁和3杯牛奶)。提问:如果将果汁的杯数与牛奶的杯数进行比较,结果怎样?
根据学生回答,教师整理板书:)相减相差{牛奶比果汁多1杯3-2=1果汁比牛奶少1杯3-2=1
相除倍数{果汁的杯数相当于牛奶的2/3 2/3=2/3牛奶的杯数相当于果汁的3/2 3/2=3/2
2)小结:两个数量相比较,既可以用减法比较两个数量之间相差多少,也可以用除法来表示两者之间的倍数关系。
3)导入:其实,当用除法表示两个数量的关系时,还有另一种说法,想学吗?如有学生表示知道的,可以让学生来介绍介绍,再让所有学生看书验证这个学生所说的是否正确。
如果学生原来不知道,可以让学生看书自学。(二)初步认识比:
1)指名介绍:还可以怎样来说?(学生介绍,师指板书:)果汁的杯数相当于牛奶的2/3。我们还可以说成果汁与牛奶杯数的比是2比3(出示)。
2)想一想,牛奶的杯数相当于果汁的3/2。还可以怎样说?(出示:牛奶与果汁杯数的比是3比2。)
3)通过看书自学,你还知道了些什么?结合学生交流,认识比各部分名称,读法、写法。
三)认识比是有序概念。
1)同学们看一看,刚才的比的前项是2,这儿的2怎么又是比的后项了呢?(2)对!颠倒两个数量的位置,就会得出另一个比,它的意义也就不同。
因此大家在叙述的时候,一定要说清楚是哪个数量与哪个数量的比是几比几,不可颠倒顺序。
四)巩固练习。
1、出示练习十三第1题(1)要求学生用比来表示。
2)组织交流,并让学生说说是怎样想的?
3)小结:要填一个数量与另一数量的比是几比几,只要怎样看就可以了?只要看这两个数量分别有这样的几份,就是几比几。2、出示试一试。
精品资料欢迎**。
1)在日常生活中,用比表示两个数量之间的关系的现象还有很多,比如洗洁液,上面的使用说明就是用比来表示的。在这几个比中,是哪两个数量在比较?(学生默读题目后回答)
2)每一个烧杯上面的比分别表示什么意思?谁来解释一下?(学生可以用份数叙述,也可以用分数叙述,要求两种理解都要到位)
3、如果六1班男女生的比是4:5,你能用画图的方法表示吗?你还可以知道些什么?
二、教学例2,理解比的意义。
一)谈话导入:通过刚才的学习,我们对比已经有了一个初步的认识,下面我们再来看一个例子。(二)教学例2
1、呈现例2,学生阅读题目后提问:我们怎样求两人的速度?2、学生计算答案,汇报填表。
3、说明:在这里还是用除法(路程时间)计算出速度,速度实际上表示了路程与时间的关系。我们也可以用比来表示路程与时间的关系。
谁会说?(学生口答,教师出示:小军走的路程与时间的比是比是900∶15。
)4、你能用比来表示小伟走的路程与时间的比吗?(出示:小伟走的路程与时间的比是比是900∶20)(三)理解比的意义。
1、通过刚才的学习,你觉得什么情况下可以用比来表示两个数量之间的关系?(板书:两个数相除)所以两个数的比表示两个数相除。(板书完整:两个数的比表示两个数相除)
2、小结:两数相除既可以用倍数,也可表示比来表示两数关系,简称倍比关系。(板书)三、认识比值。
1、在900∶15这个比中,比的前项是几?后项是几?60是怎样得到的?我们把比的前项除以后项所得的商叫做比值。2、那么900∶20这个比的比值是多少?表示什么?
3、你能说出例1中的各个比的比值分别是多少吗?各表示什么意思?四、巩固练习1、认识**比:
这里三个不同形状的**相框,如果让你选的话,你选哪个相框来放自己的**?为什么?(第一幅和第三幅画要么太长,要么太窄,长和宽的比例不合适)为什么大家都认为第二幅比较美观呢?
你能算出这幅画长和宽的比值吗?(学生算出长和宽的比值大约是0.618)听说过**比吗?**比的比值大约是0.618。
其实呀,长和宽的比值大约是0.618的长方形,被认为是最美的。2、认识国旗上的比。
三副国旗**,哪副看上去最舒服?其实,中华人民共和国国旗法规定,国旗的长和宽的比是3:2,比值是1。
5。3、糖水的甜度(1)(出示:三杯糖水,并标出糖与水的质量的比,第一杯1∶20,第二杯1∶25)第三杯1∶40你知道哪一杯水更甜吗?
为什么?(2)(出示第四杯糖水,标出糖10克,水100克。)
现在哪杯糖水更甜?先想一想,再与同桌交流,说说你是怎样比较的?
精品资料欢迎**。
3)你能说出这几杯糖水的糖与糖水质量的比吗?五、总结:
今天我们学习了什么?你们有什么收获吗?还有什么问题吗?课前思考:
因为实习教师王老师要上《认识比》这一课,所以我和她一起就教材进行了研究和分析。
在用比表示两个具体数量的关系时,一般有两种情况:一种是表示两个同类数量间的倍数关系,另一种是表示两个不同类的数量间的关系。教材编排两道例题,分别教学这两种情况,然后概括出比的意义。
例1有2杯果汁和3杯牛奶,怎样表示两个数量之间的关系是一个开放的问题。学生通过思考要得出果汁的杯数相当于牛奶的2/3,由此引出果汁与牛奶杯数的比是2比3;由牛奶的杯数相当于果汁的3/2,引出牛奶与果汁杯数的比是3比2。结合这两个比,讲了比的表示方法(写法与读法)以及各部分名称。
教学如果联系2/3是23的结果,3/2是32的商,学生就能初步感受比与分数有关,分数与除法有关,因此比与除法有联系。如果结合2杯、3杯这些具体数量来体会2∶3和3∶2,比较它们的相同与不同,对比的认识就能深刻一些,写出比也方便一些。
第68页试一试是结合图意解释比,进一步感悟比的意义。直观的图示为各个比创造了现实情境,赋予各个比具体的内容。解释比的意义要联系图意,看着比先逐一回答**提出的问题,再用几倍或几分之几逐个描述水与洗洁液的体积关系,必须把两层意思都归结到相应的比上去,把学习心向和注意力紧扣在对比的体验上。
例2先让学生分别计算小军、小伟的行走速度,引起对路程时间=速度的回忆。然后教材指出,可以用比表示路程和时间的关系,分别写出了两人走的路程和所用时间的比是∶20,让学生感受两个不同类数量间的除法关系也可以用比表示。第69页试一试把3∶5改写成除法算式、改写成分数,是沟通比、除法与分数之间的联系,目的是加强对比的认识。
把比写成除法算式,是根据比与除法的关系,而把除法算式写成分数是旧知识。
比、除法、分数的相互关系重在理解,是必须掌握的基础知识,要通过改写来体会和掌握。至于比、除法与分数的不同,在改写中也能有所感受,不必刻意去区别。
课前思考:比的意义这课是在学生掌握分数应用题及常见的一些数量关系以及能解答简易方程基础上进行教学的。比的意义这一节课的重点是对比的意义的理解,要让学生真正理解并牢固建立起比的概念,让比的意义作为一条主线贯穿于整个的教学之中。
比是数学中的一个重要概念,比的概念实质是对两个数量进行比较,表示两个数量间的倍数关系。虽然比与除法、分数有着密切的关系,但对学生来说还是比较陌生,理解比的意义往往比较困难。要:
让学生理解1.比的意义就是两个数相除又叫做两个数的比。两个同类量的比,表示的是它们之间的倍数关系;两个不同类量的比,表示的是第三种量,如路程和时间的比表示单位时间所行的路程(即速度)。2.比和除法、分数的关系,比同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商;比同分数比较,比的前项相当于分子,后项相当于分母,比值相当于分数值。
精品资料欢迎**。
课后反思:一、从生活实际出发,联系学生已有的知识引入新知。比的现象在生活中司空见惯,例如按一定的比稀释清洁剂,加工混凝土等等都用到比的知识,在教学中联系实际生活,可以促进学生主动学习。
这节课我先出示2杯果汁和3杯牛奶,学生能根据所给的数量提出许多问题,有选择把问题写在黑板上并用算式表示。牛奶的杯数是果汁的几倍,果汁的杯数是牛奶的几分之几,可以用我们学过的除法算式来解决,今天我们来研究对两个量比较的一种新的表示方法,引出比的意义教学。二、加强知识间的联系,促进学生主动学习。
在这部分中,因为分数、除法、比有着密切的联系,在教学比的意义后,让学生通过讨论、研究、发现知识间的内在联系,研究分数、比与除法的关系,掌握它们间的内在联系,形成良好的知识网络。三、教学中注意的问题:
1、比、分数、除法的区别,比表示两个数的关系,分数表示的是一个数,除法的是一个算式。
2、体育比赛中的2:0不是比,足球赛中记录的2: 0的意义只表示某一队与另一队比赛各得的进球分数,不表示两队所得分数的倍数关系,这与今天学习数学中的比的意义不同,它虽然借用了比的写法,但它不是一个比**比在这节课中没能讲到,打算明天的课上再做介绍。
周一下午高教导在六(3)班上了一节数学课《认识比》。听课后,中高年级的数学教师们及时进行了评课,大家都感到这一节课上得有效、实在。这一学期,我也任教六年级数学,所以听了这一课后,受益非浅。
下面,就谈谈自己的一些粗浅想法,愿和组内老师一起**。一、本课时的教学目标拟定简明、切实。
教学目标是教学活动的出发点和归宿,是教学流程的准绳,也是评价教学效果的依据。因此,教学目标的拟定应追求简明、切实,为成功的课堂教学打下良好的基础。如,本课中,高教导在教案中这样表述教学目标:
使学生在具体情境中理解比的意义,掌握比的读写方法,知道比的各部分名称,会求比值;使学生在活动中培养分析、综合、抽象、概括能力,在解决实际问题的过程中,体会数学与生活的联系,体验数学学习的乐趣。短短的两句话中涵盖了对学生知识技能、数学思考与情感态度方面的达成目标的描述。二、本课时的教学环节简洁、厚实教学环节是实现教学目标的载体,是课堂教学的主体。
在本课中,共分四大板块,即教学例1,初步认识比;教学例2,认识比的意义;认识比值,会求比值;探索比与除法、分数的关系。在每一板块中还有很丰富的内容,如第一板块中,先由例题1使学生认识到两个数量相比较可以相减或相除,进而再认识到用分数表示两个数量间关系时可以用比来表示,并自学比的各部分名称和读法、写法,再通过练习十三第1题认识比是有序概念,最后通过试一试沟通比与除法的联系。又如,在巩固练习部分向学生介绍了**比以及中华人民共和国国旗法中有关国旗的长与宽的比这一知识,能让学生感受到数学知识在生活中的应用及体验的数学学习的乐趣。
这样的教学流程让听课老师一致认为这样的教学环节是非常实在和有效的。
三、本课时的**运用简单、扎实唐宋或更早之前,针对“经学”“律学”“算学”和“书学”各科目,其相应传。
精品资料欢迎**。
授者称为“博士”,这与当今“博士”含义已经相去甚远。而对那些特别讲授“武事”或讲解“经籍”者,又称“讲师”。“教授”和“助教”均原为学官称谓。
前者始于宋,乃“宗学”“律学”“医学”“武学”等科目的讲授者;而后者则于西晋武帝时代即已设立了,主要协助国子、博士培养生徒。“助教”在古代不仅要作入流的学问,其教书育人的职责也十分明晰。唐代国子学、太学等所设之“助教”一席,也是当朝打眼的学官。
至明清两代,只设国子监(国子学)一科的“助教”,其身价不谓显赫,也称得上朝廷要员。至此,无论是“博士”“讲师”,还是“教授”“助教”,其今日教师应具有的基本概念都具有了。合理运用现代化的教学**能提高课堂教学效率,高教导在课中自己设计并制作了多**课件,使之为课堂教学有效服务。
让大家感受较深的一处是教学试一试时,教材提供的是四个没有刻度的长方体容器,每个容器上标有不同的比表示每种溶液里洗结液与水体积的关系。高教导制作课件时考虑到要让学生理解这里的1:8也可以表示洗结液一份,水8份,于是课件上出现了将容器平均分成9份,学生能清楚地看到洗结液一份,水8份。
这样的处理能直观地演示洗结液与水体积之间的关系,能更好地帮助学生理解比,并为后面学习按比例分配的实际问题打下基础。唐宋或更早之前,针对“经学”“律学”“算学”和“书学”各科目,其相应传授者称为“博士”,这与当今“博士”含义已经相去甚远。而对那些特别讲授“武事”或讲解“经籍”者,又称“讲师”。
“教授”和“助教”均原为学官称谓。前者始于宋,乃“宗学”“律学”“医学”“武学”等科目的讲授者;而后者则于西晋武帝时代即已设立了,主要协助国子、博士培养生徒。“助教”在古代不仅要作入流的学问,其教书育人的职责也十分明晰。
唐代国子学、太学等所设之“助教”一席,也是当朝打眼的学官。至明清两代,只设国子监(国子学)一科的“助教”,其身价不谓显赫,也称得上朝廷要员。至此,无论是“博士”“讲师”,还是“教授”“助教”,其今日教师应具有的基本概念都具有了。
“师”之概念,大体是从先秦时期的“师长、师傅、先生”而来。其中“师傅”更早则意指春秋时国君的老师。《说文解字》中有注曰:
“师教人以道者之称也”。“师”之含义,现在泛指从事教育工作或是传授知识技术也或是某方面有特长值得学习者。“老师”的原意并非由“老”而形容“师”。
“老”在旧语义中也是一种尊称,隐喻年长且学识渊博者。“老”“师”连用最初见于《史记》,有“荀卿最为老师”之说法。慢慢“老师”之说也不再有年龄的限制,老少皆可适用。
只是司马迁笔下的“老师”当然不是今日意义上的“教师”,其只是“老”和“师”的复合构词,所表达的含义多指对知识渊博者的一种尊称,虽能从其身上学以“道”,但其不一定是知识的传播者。今天看来,“教师”的必要条件不光是拥有知识,更重于传播知识。返璞归真是新课程对数学课堂回归本质的热切期盼,让我们的数学课堂教学多一些理性,追求简约,崇尚真实,以创出一片课改实践的广阔天地。
苏教版六年级数学下 “认识比”教学设计
苏教版六年级数学下 认识比 教学设计1 教科书第68 69页,例1 例2 试一试 练一练,练习十三第1 5题。教学目标 1 理解比的意义,学会比的读 写法,掌握比的各部分名称及求比值的方法。2 弄清比同除法 分数的关系。3 使学生在解决简单实际问题过程中,感受比与日常生活密切联系,增强自主探索与合作...
苏教版六年级上册《认识比》教学设计
平果第一小学黄华新。一 激活经验,激发学生内需。师 每天早上小明妈妈为家人准备营养早餐,我们和小明一起来看准备了什么呢?课件出示例1 妈妈早晨准备了2杯果汁和3杯牛奶。师 谁可以用我们学过的知识来表示这两个数量之间的关系?相差关系 牛奶比果汁多1杯 果汁比牛奶少1杯 师 还可以怎么说吗?比如用倍数关...
苏教版六年级上册数学《认识比》教学设计
一 创设情境,导入新课。你知道这是什么时候拍的 吗?对,节的情景一定还深深的留在大家的记忆里,数码相机把这一刻给定格了。我把这张 放在方格纸当中,下面有两幅放大后的 哪一幅没有改变原来的形状呢?对。我们去照相馆放大 只是改变 的大小却没有改变 的形状,这里就蕴含着一个数学的问题,也就是我们将要学习的...