小学升初中数学试题精选。
一、填空题:
2.三个不同的三位数相加的和是2993,那么这三个加数是___
3.小明在计算有余数的除法时,把被除数472错看成427,结果商比原来小5,但余数恰巧相同.则该题的余数是___
4.在自然数中恰有4个约数的所有两位数的个数是___
5.如图,已知每个小正方形格的面积是1平方厘米,则不规则图形的面积是___
6.现有2克、3克、6克砝码各一个,那么在天平秤上能称出___种不同重量的物体.
7.有一个算式:
五入的近似值,则算式□中的数依次分别是___
8.某项工作先由甲单独做45天,再由乙单独做18天可以完成,如果甲乙两人合作可30天完成。现由甲先单独做20天,然后再由乙来单独完成,还需要___天.
9.某厂车队有3辆汽车给a、b、c、d、e五个车间组织循环运输。如图所示,标出的数是各车间所需装卸工人数.为了节省人力,让一部分装卸工跟车走,最少安排___名装卸工保证各车间的需要.
10.甲容器中有纯酒精340克,乙容器有水400克,第一次将甲容器中的一部分纯酒精倒入乙容器,使酒精与水混合;第二次将乙容器中的一部分混合液倒入甲容器,这时甲容器中纯酒精含量70%,乙容器中纯酒精含量为20%,则第二次从乙容器倒入甲容器的混合液是___克.
二、解答题:
1.有红黄两种玻璃球一堆,其中红球个数是黄球个数的1.5倍,如果从这堆球中每次同时取出红球5个,黄球4个,那么取了多少次后红球剩9个,黄球剩2个?
2.小明一家四口人的年龄之和是147岁,爷爷比爸爸大38岁,妈妈比小明大27岁,爷爷的年龄是小明与妈妈年龄之和的2倍,问小明一家四口人的年龄各是多少岁?
3.a、b、c、d、e五人在一次满分为100分的考试中,a得94分,b是第一名,c得分是a与d的平均分,d得分是五人的平均分,e比c多2分,是第二名,则b得了多少分?
4.甲乙两人以匀速绕圆形跑道相向跑步,出发点在圆直径的两端.如果他们同时出发,并在甲跑完60米时第一次相遇,乙跑一圈还差80米时俩人第二次相遇,求跑道的长是多少米?
小学升初中数学试题精选答案。
一、填空题:
原式=7.2×61.3+(61.3+12.5)×2.8=(7.2+2.8)×61.3+12.5×2.8
由于2993÷3=997…2,这三个加数必然接近997,显然的和是2993,但由于所求三个加数不同,经过调整应为.
在这两种除法计算中,除数与余数没变,只是商比原来小5.设除数是a,余数是r,则。
472=a×商+r
427=a×(商-5)+r
有472-427=a×5,a=(472-427)÷5=9
所以余数r=4.
因为4=1×4=2×2,有4个约数的数一定能表示成a3或ab,a、b是质数.
对于a3,只有a=3时,a3=27是两位数,即有1个数符合条件.
对于ab,当a=2,b时符合条件,有13个;当a=3,b取大于3且小于37的质数时,符合条件,有9个;同理当a=5时有5个;a=7时有2个.则自然数中恰有4个约数的所有两位数的个数是:
1+13+9+5+2=30(个)
5.19平方厘米。
所求图形是不规则图形,通过分割可以很容易求出图中标出图形的面积,用整个大长方形面积减去这7个图形的面积即为所求,所以不规则图形面积为:
=(19平方厘米)
这道题没有限制砝码只能放在天平的同一秤盘上,因此天平两边的秤盘上都可以放砝码,尽管只有2克、3克、6克砝码各一个,但是如果天平一边是2克,另一边是3克,就可称出1克重的物体,如果它俩放在同一边又可称出5克重的物体.同理,2克与6克砝码可称出4克或8克重的物体;3克与6克砝码可称出3克或9克重的物体,其中3克重物体可以直接用3克砝码称出;用2克、3克和6克可称出7克、5克、1克、11克重的物体;所以用这三个砝码可称出克共10种不同重量的物体.
于是有150.15≤55×□+22×□+10×□≤151.14
由于□里的数是整数,所以。
只有 55×1+22×3+10×3=151
所以□里数字依次填1,3,3.
由题意知甲乙两人合作30天可以完成这项工作.甲做45天,比30天多15天,乙可少做。
30-18=12(天)
说明甲做15天相当于乙做12天.
现在甲做20天,比30天少10天,这10天的工作量让乙来完成,需要天数:
乙还需要单独做:
30+8=38(天)
每个车间抽出3名装卸工,共抽出3×5=15人,每辆车上有3人,共需3×3=9人,这样可节约15-9=6(人).这时a有3人,b有2人,c有4人,d有0人,e有5人.再从a、b、c、e各抽出2人,每车上2人,这样又可省去2×4-2×3=2人.这样每辆车跟5人,共15人,a有1人,b有0人,c有2人,e有3人,d还是0人.共需装卸工:
5×3+1+2+3=21(人)
第二次从乙容器里倒出一部分给甲容器,并不改变乙容器的酒精浓度,所以乙容器里酒精浓度是第一次甲容器倒入一部分纯酒精而得到的,因此乙容器中酒精与水之比是:
那么第一次从甲容器里倒出100克给乙容器,则乙容器中纯酒精与水之比恰好是:
第二次倒后,甲容器里酒精与水之比是。
设第二次从乙容器中倒出x克酒精溶液,则第二次倒后,甲容器有纯酒。
所以第二次从乙容器里倒入甲容器的混合溶液是144克.
二、解答题:
1.取了6次后,红球剩9个,黄球剩2个.
设取了x次后,红球剩9个,黄球剩2个.
5x+9=(4x+2)×1.5
5x+9=6x+3
x=6所以取6次后,红球剩9个,黄球剩2个.
2.小明5岁,妈妈32岁,爸爸36岁,爷爷74岁。
妈妈与小明年龄之和:
(147+38)÷(2×2+1)=37(岁)
小明的年龄:(37-27)÷2=5(岁)
妈妈的年龄:37-5=32(岁)
爷爷的年龄: 37×2=74(岁)
爸爸的年龄:74-38=36(岁)
3.b得98分。
由d得分是五人的平均分知,d比a得分高,否则d成为五人中得分最低的,就不能是五人的平均分,由此得到五人得分从高到低依次是b、e、d、c、a.
由c得分是a与d的平均分,因为a是94分,94是偶数,所以d的得分也应是偶数,但d不能得100分,否则b得分超过100分;d=98分,则c=96分,e=98分,b=98×5-(98+96+94+98)=104分,超过100分,不可能;所以d=96分,c=95分,e=97分,b得分是。
96×5-(97+96+95+94)=98(分)
4.跑道长是200米。
第一次相遇甲、乙共跑了半圈,其中甲跑了60米.设半圈跑道长为x米,乙在俩人第一次相遇时跑了x-60米.从出发到甲乙第二次相遇共跑了3个半圈长,由于他俩匀速跑步,在3个半圈长里乙应跑3(x-60)米,而这个距离恰好是乙跑一圈还差80米,即2x-80米,所以。
3(x-60)=2x-80
3x-180=2x-80
x=1002x=2×100=200(米)
故圆形跑道的长是200米.
小学六年级奥数试题
2011年 2012年学年度上期小学六年级奥数期末模拟试题。总分 100分考试时间 120分钟。姓名分数。一 填空题 每小题1分,共18分。1 补充完整下面的等式。a b a b c a b c 2 如果甲是乙的,乙是丙的,那么甲是丙的 如果甲是乙的,那么乙是甲的 3 浓度。4 求下列图形的面积。正...
小学六年级奥数试题
1 已知自然数n满足n5 1889568,求n。2 计算 2 5 8 1997 1 4 7 1996 3 甲 乙两人速度的比是13 11,两人分别从a b两地同时出发,若相向而行,半个小时可相遇,若同向而行,问甲需几个小时才能追上乙?4 一项工程,甲单独做需要12小时,乙单独做需要18小时。若甲做1...
小学六年级奥数试题
12 一辆客车和一辆货车从a,b两地同时相向开出。出发后2小时,两车相距282千米 出发后5小时,两车相遇。请回答 a,b两地相距 千米。13 把19个棱长为1厘米的正方体重叠起来,如右图,拼成。一个立体图形,求这个立体图形的表面积是 平方厘米。名学生当上全区儿童运动会的 志愿者 男同学2人一组,女...