开门见山,面对全体学生提问:
在初中我们初步学习了锐角三角函数,前几节课,我们把锐角推广到了任意角,学习了角度制和弧度制,这节课该研究什么呢?
探索任意角的三角函数(板书课题),请同学们回想,再明确一下:
情景1)什么叫函数?或者说函数是怎样定义的?
让学生回想后再点名回答,投影显示规范的定义,教师根据回答情况进行修正、强调:
传统定义:设在一个变化过程中有两个变量x与y,如果对于x的每一个值,y都有唯一确定的值和它对应,那么就说y是x的函数,x叫做自变量,自变量x的取值范围叫做函数的定义域。
现代定义:设a、b是非空的数集,如果按某个确定的对应关系f,使对于集合a中的任意一个数,在集合b中都有唯一确定的数 f(x)和它对应,那么就称映射:a→b为从集合a到集合b的一个函数,记作:
y= f(x),x∈a ,其中x叫自变量,自变量x的取值范围a叫做函数的定义域。
设计意图:函数和三角函数是一般和特殊的关系,是共性和个性的关系,学生已经学习了函数的概念,因此对三角函数的学习就是一个从一般到特殊的演绎的过程,也是以具体函数丰富函数概念的过程。 教学经验表明:
学生对函数两种定义的记忆是有一定困难的,容易遗忘,此处让学生对函数概念进行回想再认,目的在于明确函数概念的本质,为演绎学习任意角三角函数概念作好知识和认知准备。
情景2)我们在初中通过锐角三角形的边角关系,学习了锐角的正弦、余弦、正切等三个三角函数。 请回想:这三个三角函数分别是怎样规定的?
学生口述后再投影展示,教师再根据投影进行强调:
设计意图:学生在初中学习了锐角的三角函数概念,现在学习任意角的三角函数,又是一种推广和拓展的过程(类似于从有理数到实数的扩展). 温故知新,要让学生体会知识的产生、发展过程,就要从源头上开始,从学生现有认知状况开始,对锐角三角函数的复习就必不可少。
二) 引伸铺垫、创设情景。
情景3)我们已经把锐角推广到了任意角,锐角的三角函数概念也能推广到任意角吗?试试看,可以独立思考和探索,也可以互相讨论!
留时间让学生独立思考或自由讨论,教师参与讨论或巡回对学困生作启发引导。
能推广吗?怎样推广?针对刚才的问题点名让学生回答。
用角的对边、临边、斜边比值的说法显然是受到阻碍了,由于4.1节已经以直角坐标系为工具来研究任意角了,学生一般会想到(否说课稿**则教师进行提示)继续用直角坐标系来研究任意角的三角函数。
设计意图:从学生现有知识水平和认知能力出发,创设问题情景,让学生产生认知冲突,进行必要的启发,将学生思维引上自主探索、合作交流的“再创造”征程。
教师对学生回答情况进行点评后布置任务情景:请同学们用直角坐标系重新研究锐角三角函数定义!
师生共做(学生口述,教师板书图形和比值):
把锐角α安装(如何安装?角的顶点与原点重合,角的始边与x轴非负半轴重合)在直角坐标系中,在角α终边上任取一点p,作pm⊥x轴于m,构造一个rtδomp,则∠ mop=α(锐角),设p(x,y)(x>0、y>0),α的临边om =x、对边mp=y,斜边长|op∣=r.
根据锐角三角函数定义用x、y、r列出锐角α的正弦、余弦、正切三个比值,并补充对应列出三个倒数比值:
设计意图:此处做法简单,思想重要。 为了顺利实现推广,可以构建中间桥梁或公共载体,使之既与初中的定义一致,又能自然地迁移到任意角的情形。
由于前一节已经以直角坐标系为工具来研究任意角了,学生自然能想到仍然以直角坐标系为工具来研究任意角的三角函数。 初中以直角三角形边角关系来定义锐角三角函数,现在要用坐标系来研究,探索的结论既要满足任意角的情形,又要包容初中锐角三角函数定义。 这是一个认识的飞跃,是理解任意角三角函数概念的关键之一,也是数学发现的重要思想和方法,属于策略性知识,能够形成迁移能力,为学生在以后学习中对某些知识进行推广拓展奠定了基础(譬如从平面向量到空间向量的扩展,从实数到复数的扩展等).
情景4)各个比值与角之间有怎样的关系?比值是角的函数吗?
追问:锐角α大小发生变化时,比值会改变吗?
先让学生想象思考,作出主观判断,再用几何画板动画演示,同时作好解释说明:保持r不变,让p绕原点o旋转即α在锐角范围内变化,六个比值随之变化的直观形象。结论是:
比值随α的变化而变化。
引导学生观察图3,联系相似三角形知识,探索发现:
对于锐角α的每一个确定值,六个比值都是。
确定的,不会随p在终边上的移动而变化。
得出结论(强调):当α为锐角时,六个比值随α的变化而变化;但对于锐角α的每一个确定值,六个比值都是确定的,不会随p在终边上的移动而变化。 所以,六个比值分别是以角α为自变量、以比值为函数值的函数。
设计意图:初中学生对函数理解较肤浅,这里在学生思维的最近发展区进一步研究初中学过的锐角三角函数,在思维上更上了一个层次,扣准函数概念的内涵,突出变量之间的依赖关系或对应关系,是从函数知识演绎到三角函数知识的主要依据,是准确理解三角函数概念的关键,也是在认知上把三角函数知识纳入函数知识结构的关键。 这样做能够使学生有效地增强函数观念。
三)分析归纳、自主定义。
情境5)能将锐角的比值情形推广到任意角α吗?
水到渠成,师生共同进行探索和推广:
对于一个任意角α,它的终边所在位置包括下列两类共八种情形(投影展示并作分析):
终边分别在四个象限的情形终边分别在四个半轴上的情形:
指出:不画出角的方向,表明角具有任意性)
怎样刻画任意角的三角函数呢?研究它的六个比值:
板书)设α是一个任意角,在α终边上除原点外任意取一点p(x,y),p与原点o之间的距离记作r(r=>0),列出六个比值:
=kπ+π2时,x=0,比值 y/x、r/x 无意义;
= kπ时,y=0,比值x /y、r /y无意义。
追问:α大小发生变化时,比值会改变吗?
先让学生想象思考,作出主观判断,再用几何画板动画演示,同时作好解释说明:使r保持不变,p绕原点o逆时针、顺时针旋转即角α变化,六个比值随之改变的直观形象。结论是:
各比值随α的变化而变化。
再引导学生利用相似三角形知识,探索发现: 对于任意角α的每一个确定值,六个比值都是确定的,不会随p在终边上的移动而变化。
综上得到(强调):当角α变化时,六个比值随之变化;对于确定的角α, 六个比值(如果存在的话)都不会随p在角α终边上的改变而改变,六个比值是确定的(对应的多值性即诱导公式一留到下节课分析).
因此,六个比值分别是以角α为自变量、以比值为函数值的函数。
根据历史上的规定,对比值进行命名,指出英文记法和读法,记作(承前作复合板书):
sinα(正弦cosα(余弦tanα(正切)
cscα(余割sec(正弦cotα(余切)
教师强调:sinα表示sin与α的乘积吗?不是,sinα是函数记号,是一个整体,相当于函数记号f(x). 其它几个三角函数也如此。
投影显示图六,指导学生分析其对应关系,进一步体会其函数内涵:
图六) 指导学生识记六个比值及函数名称。
教师指出:正弦、余弦、正切、余切、正割、余割六个函数统称为三角函数,三角函数有非常丰富的知识和思想方法,我们以后主要学习正弦、余弦、正切三个函数的相关知识和方法,对于余切、正割、余割,只要同学们了解它们的定义就够了(遵循大纲要求).
引导学生进一步分析理解:
已知角的集合与实数集之间可以建立一一对应关系,对于每一个确定的实数,把它看成一个弧度数,就对应着唯一的一个角,从而分别对应着六个唯一的三角函数值。 因此,(板书)三角函数可以看成是以实数为自变量的函数,这将为以后的应用带来很多方便。
设计意图:把角的终边分别在四个象限、四条半轴上的情形全作出来,有利于对任意性的全面把握。 明确比值存在与否的条件,为确定函数定义域作准备。
动画演示比值与角之间的依赖性与确定性关系,深化理解三角函数内涵。 引导学生在理解的基础上自主地对三角函数作出明确定义,是本节课的中心任务。 由于学生刚学弧度制,对弧度制的理解有待于在以后的学习应用中逐步感悟,因此部分学生对“三角函数可以看成是以实数为自变量的函数”的理解有半信半疑之感,有待通过后续的应用加深理解。
四) 探索定义域。
情景6)(1)函数概念的三要素是什么?
函数三要素:对应法则、定义域、值域。
正弦函数sinα的对应法则是什么?
正弦函数sinα的对应法则,实质上就是sinα的定义:对α的每一个确定的值,有唯一确定的比值y/r与之对应,即α→ y/r= sinα.
2)布置任务情景:什么是三角函数的定义域?请求出六个三角函数的定义域,填写下表:
引导学生自主探索:
如果没有特别说明,那么使解析式有意义的自变量的取值范围叫做函数的定义域,三角函数的定义域自然是指:使比值有意义的角α的取值范围。
关于sinα=y/r、cosα=x/r,对于任意角α(弧度数),r>0,y/r、x/r恒有意义,定义域都是实数集r.
对于tanα=y/x,α=kπ+π2 时x=0,y/x无意义,tanα的定义域是:{αr,且α≠kπ+π2
教师指出: sinα、cosα、tanα的定义域必须紧扣三角函数定义在理解的基础上记熟,cotα、cscα、secα的定义域不要求记忆。
关于值域,到后面再学习).
设计意图:定义域是函数三要素之一,研究函数必须明确定义域。 指导学生根据定义自主探索确定三角函数定义域,有利于在理解的基础上记住它、应用它,也增进对三角函数概念的掌握。
五)符号判断、形象识记。
情景7)能判断三角函数值的正、负吗?试试看!
引导学生紧紧抓住三角函数定义来分析,r>0,三角函数值的符号决定于x、y值的正负,根据终边所在位置总结出形象的识记口诀:
同好得正、异号得负)
sinα= y/r:上正下负横为0 cosα=x/r:左负右正纵为0 tanα=y/x:交叉正负。
设计意图:判断三角函数值的正负符号,是本章教材的一项重要的知识、技能要求。 要引导学生抓住定义、数形结合判断和记忆三角函数值的正负符号,并总结出形象的识记口诀,这也是理解和记忆的关键。
《任意角的三角函数》第一课时
教材 人教a版。内容 必修四。主题 1.2.1 任意角的三角函数。课时 第一课时。授课对象 中牟二高1605 设计者 王安伟。目标确定依据 课标要求 借助单位圆理解任意角的三角函数 正弦 余弦 正切 定义,教材分析 1 借助单位圆理解并掌握任意角的三角函数定义。2 理解三角函数是以实数为自变量的函数...
任意角的三角函数第一课时
一 教学内容分析 高一年 普通高中课程标准教科书 数学 必修4 人教版a版 第12页1.2.1任意角的三角函数第一课时。本节课是三角函数这一章里最重要的一节课,它是本章的基础,主要是从通过问题引导学生自主 任意角的三角函数的生成过程,从而很好理解任意角的三角函数的定义。在 课程标准 中 三角函数是基...
任意角的三角函数 第一课时
学习目标 1 掌握任意角的正弦 余弦 正切的定义。2 理解任意角的三角函数不同的定义方法。学习重点 任意角的正弦 余弦 正切的定义。学习难点 用角的终边上的点的坐标来刻画三角函数。学习过程 复习回顾 我们已经学习过锐角的三角函数,如图 当角 不是锐角时,sin cos tan 的值又如何去求呢?知识...