数学建模的介绍

发布 2023-05-17 19:50:28 阅读 3193

随着社会的发展,数学在社会各领域中的应用越来越广泛,作用越来越大,不但运用于自然科学各学科、各领域,而且渗透到经济、军事、管理以至于社会科学和社会活动的各领域。但是,社会对数学的需求并不只是需要数学家和专门从事数学研究的人才,,取得经济效益和社会效益。他们不是为了应用数学知识而寻找实际问题(就像在学校里做数学应用题),而是为了解决实际问题而需要用到数学。

而且不止是要用到数学,很可能还要用到别的学科、领域的知识,要用到工作经验和常识。特别是在现代社会,要真正解决一个实际问题几乎都离不开计算机。可以这样说,在实际工作中遇到的问题,完全纯粹的只用现成的数学知识就能解决的问题几乎是没有的。

你所能遇到的都是数学和其他东西混杂在一起的问题,不是“干净的”数学,而是“脏”的数学。其中的数学奥妙不是明摆在那里等着你去解决,而是暗藏在深处等着你去发现。也就是说,你要对复杂的实际问题进行分析,发现其中的可以用数学语言来描述的关系或规律,把这个实际问题化成一个数学问题,这就称为数学模型,建立数学模型的这个过程就称为数学建模。

模型所模仿的都只是真实事物的某一方面的属性。而数学模型,就是用数学语言(可能包括数学公式)去描述和模仿实际问题中的数量关系、空间形式等。这种模仿当然是近似的,但又要尽可能逼真。

实际问题中有许多因素,在建立数学模型时你不可能、也没有必要把它们毫无遗漏地全部加以考虑,只能考虑其中的最主要的因素,舍弃其中的次要因素。数学模型建立起来了,实际问题化成了数学问题,就可以用数学工具、数学方法去解答这个实际问题。如果有现成的数学工具当然好。

如果没有现成的数学工具,就促使数学家们(也包括建立数学模型的人)寻找和发展出新的数学工具去解决它,这又推动了数学本身的发展。求解数学模型,除了用到数学推理以外,通常还要处理大量数据,进行大量计算,电子计算机的出现和迅速发展,给用数学模型解决实际问题打开了广阔的道路。但是由于数学模型只能近似地反映实际问题中的关系和规律,到底反映得好不好,还需要接受检验,如果数学模型建立得不好,没有正确地描述所给的实际问题,数学解答再正确也是没有用的。

因此,在得出数学解答之后还要让所得的结论接受实际的检验,看它是否合理,是否可行,等等。如果不符合实际,还应设法找出原因,修改原来的模型,重新求解和检验,直到比较合理可行,才能算是得到了一个解答,可以先付诸实施。但是,十全十美的答案是没有的,已得到的解答—定还有改进的余地,还可以根据实际情况,或者继续研究和改进;或者暂时告一段落,待将来有新的情况和要求后再作改进。

数学建模的意义。

数学,作为一门研究现实世界数量关系和空间形式的科学,在它产生和发展的历史长河中,一直是和人们生活的实际需要密切相关的。作为用数学方法解决实际问题的第一步,数学建模自然有着与数学同样悠久的历史。两千多年以前创立的欧几里德几何,17世纪发现的牛顿万有引力定律,都是科学发展史上数学建模的成功范例。

进入20世纪以来,随着数学以空前的广度和深度向一切领域渗透,以及电子计算机的出现与飞速发展,数学建模越来越受到人们的重视,可以从以下几方面来看数学建模在现实世界中的重要意义。

(1)在一般工程技术领域,数学建模仍然大有用武之地。

在以声、光、热、力、电这些物理学科为基础的诸如机械、电机、土木、水利等工程技术领域中,数学建模的普遍性和重要性不言而喻,虽然这里的基本模型是已有的,但是由于新技术、新工艺的不断涌现,提出了许多需要用数学方法解决的新问题;高速、大型计算机的飞速发展,使得过去即便有了数学模型也无法求解的课题(如大型水坝的应力计算,中长期天气预报等)迎刃而解;建立在数学模型和计算机模拟基础上的cad技术,以其快速、经济、方便等优势,大量地替代了传统工程设计中的现场实验、物理模拟等手段。

(2)在高新技术领域,数学建模几乎是必不可少的工具。

无论是发展通讯、航天、微电子、自动化等高新技术本身,还是将高新技术用于传统工业去创造新工艺、开发新产品,计算机技术支持下的建模和模拟都是经常使用的有效手段。数学建模、数值计算和计算机图形学等相结合形成的计算机软件,已经被固化于产品中,在许多高新技术领域起着核心作用,被认为是高新技术的特征之一。在这个意义上,数学不再仅仅作为一门科学,它是许多技术的基础,而且直接走向了技术的前台。

国际上一位学者提出了“高技术本质上是一种数学技术”的观点。

(3)数学迅速进入一些新领域,为数学建模开拓了许多新的**地。

随着数学向诸如经济、人口、生态、地质等所谓非物理领域的渗透,一些交叉学科如计量经济学、人口控制论、数学生态学、数学地质学等应运而生。一般地说,不存在作为支配关系的物理定律,当用数学方法研究这些领域中的定量关系时,数学建模就成为首要的、关键的步骤和这些学科发展与应用的基础。在这些领域里建立不同类型、不同方法、不同深浅程度模型的余地相当大,为数学建模提供了广阔的新天地。

马克思说过,一门科学只有成功地运用数学时,才算达到了完善的地步。而进入21世纪,数学必将大踏步地进入所有学科,数学建模将迎来蓬勃发展的新时期。

关于大学生数学建模竞赛。

由于认识到培养应用型数学人才的重要性,而传统的数学竞赛不能担当这个任务,从2023年起,在美国就有一些有识之士开始**组织一项应用数学方面的竞赛的可能性。经过论证、争论、争取资助的过程,终于在2023年开始有了美国的第一届大学生数学建模竞赛,简称mcm(2023年以前的全称是mathematical competition in modeling,2023年改为mathematical contest in modeling,其缩写均为mcm)。竞赛由美国工业与应用数学学会和美国运筹学会联合主办。

从2023年起每年举行一届,在每年的二月下旬或三月初的某个星期五到星期日举行,到2023年已举行了12届。2023年我国大学生(北京大学、清华大学、北京理工大学共4个队)开始参加美国的竞赛。经过两三年的参与,大家认为竞赛是推动数学建模教学在高校迅速发展的好形式,2023年由中国工业与应用数学学会数学模型专业委员会组织举办了我国10城市的大学生数学模型联赛。

教育部领导及时发现、并扶植、培育了这一新生事物,决定从2023年起由教育部高教司和中国工业与应用数学学会共同主办全国大学生数学建模竞赛,每年一次。十几年来这项竞赛的规模以平均年增长25%以上的速度发展。

这项竞赛的宗旨是鼓励大学生运用所学的知识(包括数学知识及其他各方面的知识)去参与解决实际问题的全过程。这些实际问题并不限于某个特定领域,可以涉及非常广泛的、并不固定的范围。这样来促进应用人才的培养。

比赛的形式:比赛是真正的团体赛,每个参赛队由三人组成,在规定的三天时间内共同完成一份答卷。每个参赛队有一个指导教师,在比赛前负责培训并接受考题,将考题在规定的时间发给学生,然后由学生自行做题,教师不得参赛。

每次的考题只有两个题,都是来自实际的问题或有强烈实际背景的问题,没有固定的范围,可能涉及各个非常不同的学科、领域。每个参赛队从这两个考题中任意选做一个题。参赛队的三名队员可以相互讨论,可以查阅资料,可以使用计算机和计算机软件。

一言以蔽之:可以使用任何非生命的资源,但不允许三人以外的其他人(包括指导教师)帮助做题。参赛队的答卷应是,一篇完整的**,包括对所选问题的重新阐述、对问题的条件和假设的阐明和必要补充甚至修改、对为什么要用所述模型的分析、模型的设计、对模型的测试和检验的讨论、模型的优缺点等,还要有一个不超过一页的**内容的摘要。

关于我校数学建模假期培训。

培训人员的确定。

在尊重自愿的前提下,根据学生的综合条件择优选拔优秀队员参加暑期培训,主要参考学生的各科成绩,特别是数学基础课的成绩(包括高数﹑线代﹑概率等)和以往竞赛中的成绩(包括各类竞赛),同时考察软件的运用能力以及写作能力。

培训方式。整个培训可分两个阶段:第一阶段基本模型讲解及基本软件的学习,并布置相应阅读内容,此阶段一般从7月9日到7月16日为期8天;第二阶段数学建模案例解析、优作交流及强化训练,此阶段一般从8月10日到8月29日为期20天。

大三数学建模我们的建模

2013年第六届 认证杯 数学中国。数学建模网络挑战赛。题目护岸框架 关键词河道整治护岸固堤四面六边透水框架建模 摘要 四面六边透水框架是一种新型的江河透水护岸工程技术。通过室内试验,研究了四面六边透水框架固堤护岸的可行性 计算分析了透水框架的布设方式 结构尺寸对流水减速落淤的影响。本文针对江河岸堤...

数学建模的意义

数学建模。数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象 简化建立能近似刻画并 解决 实际问题的一种强有力的数学手段。数学建模就是用数学语言描述实际现象的过程。这里的实际现象既包涵具体的自然现象比如自由落体现象,也包涵抽象的现象比如顾客对某种商品所取的价值倾向。这里的描述不但包括外在...

数学建模的作用

目录。摘要1关键词1 引言11 数学建模的意义1 2.数学建模和 四种能力 的关系2 2.1 数学建模与实践能力的关系2 2.2 数学建模与创造能力的关系2 2.3 数学建模与就业能力的关系3 2.4 数学建模与创业能力的关系3 3.如何改进数学建模教学培养 四种能力4 3.1改进数学建模教学培养实...