小学数学奥数教程 五年级

发布 2023-03-16 15:42:28 阅读 9360

例3 有m(m≥2)只杯子全部口朝下放在桌子上,每次翻转其中的(m-1)只杯子。经过若干次翻转,能使杯口全部朝上吗?

分析与解:当m是奇数时,(m-1)是偶数。由例2的分析知,如果每次翻转偶数只杯子,那么无论经过多少次翻转,杯口朝上(下)的杯子数的奇偶性不会改变。

一开始m只杯子全部杯口朝下,即杯口朝下的杯子数是奇数,每次翻转(m-1)即偶数只杯子。无论翻转多少次,杯口朝下的杯子数永远是奇数,不可能全部朝上。

当m是偶数时,(m-1)是奇数。为了直观,我们先从m= 4的情形入手观察,在下表中用∪表示杯口朝上,∩表示杯口朝下,每次翻转3只杯子,保持不动的杯子用*号标记。翻转情况如下:

由上表看出,只要翻转4次,并且依次保持第1,2,3,4只杯子不动,就可达到要求。一般来说,对于一只杯子,要改变它的初始状态,需要翻奇数次。对于m只杯子,当m是偶数时,因为(m-1)是奇数,所以每只杯子翻转(m-1)次,就可使全部杯子改变状态。

要做到这一点,只需要翻转m次,并且依次保持第1,2,…,m只杯子不动,这样在m次翻转中,每只杯子都有一次没有翻转,即都翻转了(m-1)次。

综上所述:m只杯子放在桌子上,每次翻转(m-1)只。当m是奇数时,无论翻转多少次,m只杯子不可能全部改变初始状态;当m是偶数时,翻转m次,可以使m只杯子全部改变初始状态。

例4 一本**集编入15篇文章,这些文章排版后的页数分别是1,2,3,…,15页。如果将这些文章按某种次序装订成册,并统一编上页码,那么每篇文章的第一面是奇数页码的最多有几篇?

分析与解:可以先研究排版一本书,各篇文章页数是奇数或偶数时的规律。一篇有奇数页的文章,它的第一面和最后一面所在的页码的奇偶性是相同的,即排版奇数页的文章,第一面是奇数页码,最后一面也是奇数页码,而接下去的另一篇文章的第一面是排在偶数页码上。

一篇有偶数页的文章,它的第一面和最后一面所在的页码的奇偶性是相异的,即排版偶数页的文章,第一面是奇(偶)数页码,最后一面应是偶(奇)数页码,而紧接的另一篇文章的第一面又是排在奇(偶)数页码上。

以上说明本题的解答主要是根据奇偶特点来处理。

题目要求第一面排在奇数页码的文章尽量多。首先考虑有偶数页的文章,只要这样的第一篇文章的第一面排在奇数页码上(如第1页),那么接着每一篇有偶数页的文章都会是第一面排在奇数页码上,共有7篇这样的文章。然后考虑有奇数页的文章,第一篇的第一面排在奇数页码上,第二篇的第一面就会排在偶数页码上,第三篇的第一面排在奇数页码上,如此等等。

在8篇奇数页的文章中,有4篇的第一面排在奇数页码上。因此最多有7+4=11(篇)文章的第一面排在奇数页码上。

例5 有大、小两个盒子,其中大盒内装1001枚白棋子和1000枚同样大小的黑棋子,小盒内装有足够多的黑棋子。阿花每次从大盒内随意摸出两枚棋子,若摸出的两枚棋子同色,则从小盒内取一枚黑棋子放入大盒内;若摸出的两枚棋子异色,则把其中白棋子放回大盒内。问:

从大盒内摸了1999次棋子后,大盒内还剩几枚棋子?它们都是什么颜色?

分析与解:大盒内装有黑、白棋子共1001+1000=2001(枚)。

因为每次都是摸出2枚棋子放回1枚棋子,所以每摸一次少1枚棋子,摸了1999次后,还剩2001-1999=2(枚)棋子。

从大盒内每次摸2枚棋子有以下两种情况:

(1)所摸到的两枚棋子是同颜色的。此时从小盒内取一枚黑棋子放入大盒内。当所摸两枚棋子同是黑色,这时大盒内少了一枚黑棋子;当所摸两枚棋子同是白色,这时大盒内多了一枚黑棋子。

(2)所摸到的两枚棋子是不同颜色的,即一黑一白。这时要把拿出的白棋子放回到大盒,大盒内少了一枚黑棋子。

综合(1)(2),每摸一次,大盒内的黑棋子总数不是少一枚就是多一枚,即改变了黑棋子数的奇偶性。原来大盒内有1000枚即偶数枚黑棋子,摸了1999次,即改变了1999次奇偶性后,还剩奇数枚黑棋子。因为大盒内只剩下2枚棋子,所以最后剩下的两枚棋子是一黑一白。

例6 一串数排成一行:1,1,2,3,5,8,13,21,34,55,…

到这串数的第1000个数为止,共有多少个偶数?

分析与解:首先分析这串数的组成规律和奇偶数情况。

这串数的规律是,从第三项起,每一个数等于前两个数的和。根据奇偶数的加法性质,可以得出这串数的奇偶性:

奇,奇,偶,奇,奇,偶,奇,奇,偶,……

容易看出,这串数是按“奇,奇,偶”每三个数为一组周期变化的。 1000÷3=333……1,这串数的前1000个数有333组又1个数,每组的三个数中有1个偶数,并且是第3个数,所以这串数到第1000个数时,共有333个偶数。

练习8 1.在11,111,1111,11111,…这些数中,任何一个数都不会是某一个自然数的平方。这样说对吗?

2.一本书由17个故事组成,各个故事的篇幅分别是1,2,3,…,17页。这17个故事有各种编排法,但无论怎样编排,故事正文都从第1页开始,以后每一个故事都从新一页码开始。

如果要求安排在奇数页码开始的故事尽量少,那么最少有多少个故事是从奇数页码开始的?

3.桌子上放着6只杯子,其中3只杯口朝上,3只杯口朝下。如果每次翻转5只杯子,那么至少翻转多少次,才能使6只杯子都杯口朝上?

4.70个数排成一行,除了两头的两个数以外,每个数的3倍都恰好等于它两边的两个数的和,这一行数的最左边的几个数是这样的:0,1,3,8,21,…问:

最右边的一个数是奇数还是偶数?

5.学校组织运动会,小明领回自己的运动员号码后,小玲问他:“今天发放的运动员号码加起来是奇数还是偶数?

”小明说:“除开我的号码,把今天发的其它号码加起来,再减去我的号码,恰好是100。”今天发放的运动员号码加起来,到底是奇数还是偶数?

6.在黑板上写出三个整数,然后擦去一个换成所剩两数之和,这样继续操作下去,最后得到88,66,99。问:原来写的三个整数能否是1,3,5?

7.将888件礼品分给若干个小朋友。问:分到奇数件礼品的小朋友是奇数还是偶数?

练习8 1.对。提示:因为平方数能被4整除或除以4余1,而形如111…11的数除以4的余数与11除以4的余数相同,余3,所以不是平方数。

2.5个。提示:与例4类似分析可知,先排9个奇数页的故事,其中有5个从奇数页开始,再排8个偶数页的故事,都是从偶数页码开始。

3.3次。提示:见下表。

4.偶数。提示:这行数的前面若干个数是:0,1,3,8,21,55,144,377,987,2584,…

这些数的奇偶状况是:偶,奇,奇,偶,奇,奇,偶,奇,奇,……

从前到后按一偶二奇的顺序循环出现。70÷3=23……1,第70个数是第24组数的第一个数,是偶数。

5.偶数。提示:号码总和等于100加上小明号码的2倍。

6.不能。提示:如果原来写的是1,3,5,那么从第一次改变后,三个数永远是两个奇数一个偶数。

7.偶数。提示:如果是奇数,那么分到奇数件礼品的小朋友得到的礼品总数是奇数,而分到偶数件礼品的小朋友得到的礼品总数是偶数,于是得出所有礼品总数是奇数,与888件礼品矛盾。

小学数学奥数教程 五年级

本教程共30讲。本教程共30讲。孙子问题与逐步约束法。在古书 孙子算经 中有一道题 今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?意思是 有一堆物品,三个三个数剩两个,五个五个数剩三个,七个七个数剩两个。求这堆物品的个数。我们称这类问题为孙子问题。例1 一个数除以3余2,除以5...

小学数学奥数教程 五年级

本教程共30讲。质数与合数。自然数按照能被多少个不同的自然数整除可以分为三类 第一类 只能被一个自然数整除的自然数,这类数只有一个,就是1。第二类 只能被两个不同的自然数整除的自然数。因为任何自然数都能被1和它本身整除,所以这类自然数的特征是大于1,且只能被1和它本身整除。这类自然数叫质数 或素数 ...

小学五年级奥数教程

以下练习题,每题请在30秒钟时间内完成,同学们,抢答开始啦,准备好了吗?1.一个两位数,它的个位数字与十位数字的和与积都等于4,这个两位数是 2.99999999的末位数字是。3.两个质数的和是33,问这两个质数的积是 4.计算 74 272727 747474 5.不超过1.72的最大整数是 6....