先做几道基础题:
1、如图(1):ad⊥bc,垂足为d,bd=cd。
求证:△abd≌△acd。
2. 如图(8):a、b、c、d四点在同一直线上,ac=db,be∥cf,ae∥df。
求证:△abe≌△dcf。
3、如图(10)∠bac=∠dae,∠abd=∠ace,bd=ce。 求证:ab=ac。
4. 如图:ab=dc,be=cf,af=de。
求证:△abe≌△dcf。
一.解答题(共16小题)
1.如图,已知ab∥de,ab=de,af=dc.
1)求证:△abf≌△dec;
2)请你找出图中还有的其他几对全等三角形.(只要直接写出结果,不要证明)
2.如图,在rt△abc中,∠acb=90°,ac=bc,d是斜边ab上的一点,ae⊥cd于e,bf⊥cd交cd的延长线于f.求证:△ace≌△cbf.
3.如图,点e在△abc外部,点d在bc边上,de交ac于点f,若∠1=∠2=∠3,ac=ae.试说明下列结论正确的理由:
1)∠c=∠e;
2)△abc≌△ade.
4.如图:df=ce,ad=bc,∠d=∠c.求证:△aed≌△bfc.
5.如图,在△abc中,ab=ac,d是bc的中点,连接ad,在ad的延长线上取一点e,连接be,ce.△abe与△ace全等吗?为什么?
6.(2010顺义区)已知:如图,ab=ac,点d是bc的中点,ab平分∠dae,ae⊥be,垂足为e.
求证:ad=ae.
7.(2010**)如图,△abc中,ab=ac,bd⊥ac,ce⊥ab.求证:bd=ce.
8.(2008南宁)如图,在△abc中,d是bc的中点,de⊥ab,df⊥ac,垂足分别是e、f,be=cf.
1)图中有几对全等的三角形请一一列出;
2)选择一对你认为全等的三角形进行证明.
9.(2005新疆)在△abc中,∠acb=90°,ac=bc,直线mn经过点c,且ad⊥mn于d,be⊥mn于e,求证:de=ad+be.
10.如图,ad∥bc,∠a=90°,e是ab上的一点,且ad=be,∠1=∠2.
求证:△ade≌△bec.
11.如图,在△abc中,ac=bc,直线l经过顶点c,过a,b两点分别作l的垂线ae,bf,e,f为垂足.ae=cf,求证:∠acb=90°.
12.(2002湛江)如图,有一池塘.要测池塘两端a、b的距离,可先在平地上取一个可以直接到达a和b的点c,连接ac并延长到d,使cd=ca.连接bc并延长到e,使ce=cb.连接de,那么量出de的长,就是a、b的距离.请说明de的长就是a、b的距离的理由.
13.(2010广安)已知:如图,在矩形abcd中,be=cf,求证:af=de.
14.(2005三明)已知:如图,∠1=∠2,bd=bc.求证:∠3=∠4.
15.如图,△abc和△ade都是等腰直角三角形,ce与bd相交于点m,bd交ac于点n.
证明:(1)bd=ce;(2)bd⊥ce.
16.如图所示,△abd,△ace都是等边三角形,求证:cd=be.
答案与评分标准。
一.解答题(共16小题)
1.如图,已知ab∥de,ab=de,af=dc.
1)求证:△abf≌△dec;
2)请你找出图中还有的其他几对全等三角形.(只要直接写出结果,不要证明)
考点:全等三角形的判定。
专题:证明题。
分析:(1)根据sas可直接解答;(2)根据已知条件和(1)的结论进行判断.做题时要从已知条件开始结合全等的判定方法逐一验证,由易到难,不重不漏.
解答:(1)证明:∵ab∥de,∠a=∠d.
ab=de,af=dc,△abf≌△dec.
2)解:全等三角形有:△abc和△def;△cbf和△fec.
点评:本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即aas、asa、sas、sss,直角三角形可用hl定理,但aaa、ssa,无法证明三角形全等,本题是一道较为简单的题目.
2.如图,在rt△abc中,∠acb=90°,ac=bc,d是斜边ab上的一点,ae⊥cd于e,bf⊥cd交cd的延长线于f.求证:△ace≌△cbf.
考点:全等三角形的判定。
专题:证明题。
分析:根据等腰直角三角形的性质得出∠cae=∠bcf,又因为ac=bc,ae⊥cd于e,bf⊥cd交cd的延长线于f即可得出结论.
解答:证明:∵ae⊥cd,∠aec=90°,∠ace+∠cae=90°,(直角三角形两个锐角互余)
∠ace+∠bcf=90°,∠cae=∠bcf,(等角的余角相等)
ae⊥cd,bf⊥cd,∠aec=∠bfc=90°,在△ace与△cbf中,∠cae=∠bcf,∠aec=∠bfc,ac=bc,△ace≌△cbf(aas).
点评:本题主要考查了等腰直角三角形的性质及全等三角形的判定,难度适中.
3.如图,点e在△abc外部,点d在bc边上,de交ac于点f,若∠1=∠2=∠3,ac=ae.试说明下列结论正确的理由:
1)∠c=∠e;
2)△abc≌△ade.
考点:全等三角形的判定;三角形内角和定理。
专题:证明题。
分析:根据已知,利用有两组角对应相等的两个三角形相似得到△aef∽△dcf,从而得到∠e=∠c,再由已知可得∠bac=∠dae,又因为ac=ae,所以根据aas可判定△abc≌△ade.
解答:解:(1)△adf与△aef中,∠2=∠3,∠afe=∠cfd,∠c=∠e;
2)∵∠1=∠2,∠bac=∠dae.
ac=ae,又∠c=∠e,△abc≌△ade.
点评:此题考查学生对相似三角形的判定及全等三角形的判定的理解及运用.
三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.
4.如图:df=ce,ad=bc,∠d=∠c.求证:△aed≌△bfc.
考点:全等三角形的判定。
专题:证明题。
分析:先证明得到de=cf,然后利用“边角边”证明△aed和△bfc全等即可.
解答:证明:∵df=ce,df﹣ef=ce﹣ef,即de=cf,在△aed和△bfc中,△aed≌△bfc(sas).
点评:本题考查了全等三角形的判定,根据df=ce证明得到de=cf是解题的关键,也是本题的难点.
5.如图,在△abc中,ab=ac,d是bc的中点,连接ad,在ad的延长线上取一点e,连接be,ce.△abe与△ace全等吗?为什么?
考点:全等三角形的判定;等腰三角形的性质。
专题:证明题。
分析:根据等腰三角形的性质推出∠bae=∠cae,根据全等三角形的判定定理sas证出即可.
解答:答:△abe与△ace全等.
理由是:∵ab=ac,d是bc的中点,∠bae=∠cae,在△abe和△ace中,ab=ac,∠bae=∠cae,ae=ae,△abe≌△ace,即:△abe与△ace全等.
点评:本题主要考查对等腰三角形的性质,全等三角形的判定等知识点的理解和掌握,能推出证三角形全等的三个条件是解此题的关键.
6.(2010顺义区)已知:如图,ab=ac,点d是bc的中点,ab平分∠dae,ae⊥be,垂足为e.
求证:ad=ae.
考点:直角三角形全等的判定;全等三角形的性质。
专题:证明题。
分析:求简单的线段相等,可证线段所在的三角形全等,结合本题,证△adb≌△aeb即可.
解答:证明:∵ab=ac,点d是bc的中点,∠adb=90°,ae⊥eb,∠e=∠adb=90°,ab平分∠dae,∠1=∠2;
在△adb和△aeb中,△adb≌△aeb(aas),ad=ae.
点评:此题考查简单的线段相等,可以通过全等三角形来证明,要判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.
七年级数学全等三角形证明题
先做几道基础题 1 如图 1 ad bc,垂足为d,bd cd。求证 abd acd。2.如图 8 a b c d四点在同一直线上,ac db,be cf,ae df。求证 abe dcf。3 如图 10 bac dae,abd ace,bd ce。求证 ab ac。4.如图 ab dc,be cf...
七年级数学全等三角形证明题
先做几道基础题 1 如图 1 ad bc,垂足为d,bd cd。求证 abd acd。2.如图 8 a b c d四点在同一直线上,ac db,be cf,ae df。求证 abe dcf。3 如图 10 bac dae,abd ace,bd ce。求证 ab ac。4.如图 ab dc,be cf...
八年级全等三角形证明题
1.如图,abc 90 ab bc,bp为一条射线,ad bp,ce pb,若ad 4,ec 2.求de的长。i.2.如图 四边形abcd中,ad bc ab ad bc e是cd的中点,求证 ae be 3.在 abc中,ab ac,在ab边上取点d,在ac延长线上了取点e 使ce bd 连接de...