第一章丰富的图形世界。
编号课题 §1.1 生活中的立体图形(1)
授课时间:一、学习目标。
1、通过观察生活中的大量物体,认识基本的几何体。
2、经过比较不同的物体学会观察物体间的不同特征,体会几何体间的联系与区别。
3、尝试从不同角度,运用多种方式(观察、独立思考、自主探索、合作交流)有效解决问题。
学前准备:剪刀、长方形纸片。
二、学习过程设计。
1、导入(展示**并**录音)。
宇宙之大(海王星、流星雨),粒子之微(铍原子、氯化钠晶体结构),火箭之速(火箭),化工之巧(陶瓷),地球之变(陨石坑),生物之谜(青蛙),日用之繁(杯子、表),大千世界,天上人间,无处不有数学的贡献,让我们共同走进数学世界,去领略一下数学的风采,体会数学的魅力。 观察**,听录音。
2、导学。1).数学知识的学习,不仅开阔了我们的视野,而且改变了我们的思维方式,使我们变得更加聪明了。发挥一下我们的聪明才智,尝试解决下面的2个问题:
问题1:①计算并观察下列三组算式:
已知25×25=625,则24×26不要计算)
你能举出一个类似的例子吗?
更一般地,若a×a=m,则(a+1)(a-1
问题2:拿出手中的长方形纸片,你能剪出一个面积是长方形面积的三角形吗?行吗?
2)阅读课本2---4页,独立完成下列问题:
说出生活熟悉的几何体有哪些写下来。
议一议:圆柱、圆锥的共同点与异同点;
议一议:棱柱、圆锥的共同点与异同点;
棱柱的两种类型:直棱柱与斜棱柱,一般棱柱仅指直棱柱。
议一议:如何对以上几何体进行分类:
谈一谈:生活中还有哪些物体的形状类似于棱柱、圆柱、圆锥与球。
3、总结:谈一谈你学到了什么写下来。
例将下面的几何体进行分类,并写出简单理由。
三、随堂训练。
基础练习:1、习题1.1p1,2,3
2、请写出下列几何体的名称。
3、下面的几何体是棱柱的是( )
4. 圆柱体有个面围成,长方体有个面成。
5. 观察右图,正方体有个顶点, 条棱, 个面,这些面的形状都是 。
6、三棱锥是由面围成的,有顶点,有棱。
7、谈谈下列几何体的共同点。
选做题:1、下列图形中,阴影部分的面积相等的是。
2、三个连续奇数的和是21,它们的积为。
思考:1、把长方形剪去一个角,它可能是几边形?
3、在与伙伴玩“24点”游戏中,使数1,5,5,5通过运算得24?
四、课后作业:配套练习。
五、教学反思:
编号。一、课题 §1.1 生活中的立体图形(2)
授课时间:一、学习目标。
1.从现实生活中抽象出点、线、面等图形,培养学生的观察能力。
2.掌握点、线、面、体之间的关系。
二、学习过程设计。
一)、导入。
上节课我们观察和讨论了生活中的一些几何体,今天再一起来寻找构成图形更基本的元素面、线、点。
1.出示生活中的几何体,找出其中的平面、曲面、直线、曲线、点等。
2.举出更多生活中包含平面、曲面、直线、曲线、点等图形的例子吗?
二)、导学。
1.阅读课本解决些列问题。
1)结论:面与面相交得到线与线相交得到。
2)议一议:
1)正方体是由几个面围成的? 圆柱体是由几个面围成的? 它们都是平的吗?
2)圆柱的侧面与底面相交成几条线? 它们是直的还是曲的?
3)正方体有几个顶点? 经过每个顶点有几条边。
4)观察p8(1)图总结:体由组成,面由组成,线由组成。
点动成 ,线动成动成体。
4.你能举出反映“点动成线,线动成面,面动成体”的例子吗?
5.课堂练习:长方形(矩形),想一想将长方形绕其中一边旋转一周,得到什么几何体?三角形呢?
三、随堂训练。
基础训练:1.图形是由构成的。
2.正方体有___个顶点几条棱几个面。
3.假如我们把笔尖看作一个点,当笔尖在纸上移动时,就能画出线,说明了时钟秒针旋转时,形成一个圆面,这说明了三角板绕它的一条直角边旋转一周,形成一个圆锥体,这说明了。
4.从一个七边形的某个顶点出发,分别连结这个点与其余各顶点,可以把七边形分割成个三角形。
5.如图所示棱柱。
1)这个棱柱的底面是___边形。叫棱柱。
2)这个棱柱有___个侧面,侧面的形状是___边形。
3)侧面的个数与底面的边数___填“相等”或“不相等”)
4)这个棱柱有___条侧棱,一共有___条棱。
5)如果cc′=3 cm,那么bb′=_cm.
6.矩形绕其一边旋转一周形成的几何体叫___直角三角形绕其中一个直角边旋转一周形成的几何体叫___
7. 图1-1是由( )图形饶虚线旋转一周形成的。
8.图1-2绕虚线旋转一周形成的图形是。
选做:1、 p10第3题。
2、 如图1-4,一长方体土地,用两条直线把它分成形状相同,大小相等的四块,你能做到吗,能用不同的方法完成这个任务吗?
创新提高题。
动手做一做。想一想,将一个长方体切去一部分,看一看剩余的部分是几面体呢?
四、课后作业p
五、教学反思:
编号课题 §1.2展开和折叠(1)
授课时间:一、学习目标。
1.经历展开与折叠、模型制作等活动,发展学生的空间观念,积累数学活动经验.
2.在操作活动中认识棱柱的某些特性.
3.了解棱柱、圆柱、圆锥的侧面展开图,并能根据展开图判断和制作简单的立体模型.
二、学习过程设计。
1、阅读p11内容解决下列问题。
1).棱柱的特点(棱柱有什么与众不同的特征呢?)
1)底面:2)侧面:
3)侧棱长:
2).棱柱的种类。
通常根据将棱柱分为三棱柱、四棱柱、五棱柱……长方体和正方体都是 .
3).棱柱各元素间的数量关系如下:
2.部分几何体的平面展开图.
将一个几何体的外表面展开,就像打开一件礼物的包装纸.礼物外形不同,包装纸的形状也各不相同.那么我们熟悉的一些几何体,如圆柱、圆锥、棱柱的表面展开图是什么形状呢?
1)圆柱的表面展开图是两个圆(作底面)和一个长方形(作侧面).
(2)圆锥的表面展开图是一个圆(作底面)和一个扇形(作侧面).
(3)棱柱的表面展开图是两个完全相同的多边形(作底面)和几个长方形(作侧面)
3.能折成棱柱的平面图形的特征。
看**决p12页想一想,那么怎么样的平面图形能折成棱柱?
特点: 4..易错点辨析。
1)三棱柱的侧面是三角形2)侧面都相等。
3长方体和正方体不是棱柱4)五棱柱中五条侧棱长度相同。 (
5).三棱柱中底面三条边都相同6).棱柱是根据它总共有多少条棱来命名的。
三、例解:[例1]三棱柱有___条棱,__个面,其中侧面是___形,__面的形状一定完全相同.
例2]一个棱柱有12个顶点,所有侧棱长和为36 cm,求每条侧棱的长.
例3]下面图形经过折叠能否围成棱柱?
四、随堂训练 1、p12随堂练习。
2.下面图形不能围成一个长方体的是( )
3.五棱柱的棱数有( )
a.五条 b.十条 c.十五条 d.十二条。
4.如果长方体从一点出发的三条棱长分别为,则该长方体的面积为___体积为。
5.用一个宽2 cm,长3 cm的矩形卷成一个圆柱,则此圆柱的侧面积为。
选做:1、如果有一个正方体,它的展开图可能是下面四个展开图中的( )
拓展**:计算:1+2+3+…+2003+2004+2003+…+3+2+1=
五、课后反思。
编号课题 §1.2展开和折叠(2)
授课时间:一、学习目标:
1、进一步认识立体图形与平面图形的关系,了解立体图形可由平面图形围成,立体图形可展开为平面图形;
2、了解正方体、圆柱、圆锥的侧面展开图,能根据展开图判断立体模型;
二、学习过程设计:
1、做一做:将一个正方体沿某些棱剪开,展开成一个平面图形。
北师大七年级上数学
北师大 七年级上 数学。七年级上期期中测试题 a级 一 填空题 每空3分,共30分 1 2的倒数是。2 主视图 俯视图和左视图都是正方形的几何体是。3 圆锥有个面,它的侧面展开图是。4 在 3.67 0,1,13.486,18 这些数中,负分数有正分数有。7 比较大小3.14 8 用一个平面去截长方...
北师大七年级上数学
北师大 七年级上 数学。七年级上期期中测试题 a级 一 填空题 每空3分,共30分 1 2的倒数是。2 主视图 俯视图和左视图都是正方形的几何体是。3 圆锥有个面,它的侧面展开图是。4 在 3.67 0,1,13.486,18 这些数中,负分数有正分数有。7 比较大小3.14 8 用一个平面去截长方...
新北师大版七年级下册数学
4月12日巩固练习答案 1 如图,已知为中边的中线,交的延长线于 1 试证明 2 探索关系成立吗?南山实验2012年期中 证明 分析 本题综合性较强,考察了平行线,三角形的中线,三角形边的关系和三角形全等。如果大家没有学到三角形全等,这题做不出来还是很正常的。这题关键在于平行线的使用,以及边和角的转...