七年级数学教学建议

发布 2023-03-06 12:21:28 阅读 2797

1.关注对数学知识的理解。

1)本套教材注意从知识源头开始的学习与思考,重视知识的发展过程。从现实情境中提出问题、形成解决问题的意向(原发性思想),在实践活动中得到强化或不断地修正,不断丰富个人的直接经验,成为理解的支持系统。背景经验越丰富,知识的解释力也越强,适用范围也更广,有利于灵活的支配和运用,利于广泛迁移。

例如,可以直接告诉学生抛一枚均匀的硬币,正面朝上的概率是二分之一,但可能缺少对概率意义的深刻理解。

强调直接经验的重要作用,并不意味着理性分析和理性思考不重要。例如,通过亲历 “小车下滑的时间”的试验,实测出数据,若不进一步深入思考,很难发现变量之间的相依关系,数据也便失去了价值。教学中在活动前应让每位学生明确,将要进行的活动目的是什么?

要解决的问题是什么?甚至应鼓励对活动的结果形成预期或猜想,增强活动中的智力投资。

(2)课本里的数学知识是被客观化了的知识,而每个人自己积累的数学经验通常都带有个体的特征,对同一事物的看法也会存在差别。因此,交流就不能停留在形式上。例如,多数学生利用尺规作一条线段等于已知线段展示给大家后,有同学有如下作法:

平面内作出一个点,以此点为圆心,已知线段为半径作圆,此圆的任意一条半径都为所求。

2.准确定位,提高学习的实效性。

《三角形》一章中,为三角形性质的探索提供了广阔空间,如果仅定位在课本所呈现的现成知识的重新发现,或落实在说理证明上,那么合情推理能力的培养难免被淡化,问题意识与创新精神的培养又将失去一次良好的机会。

3.在引入单项式、多项式的定义时,教材把重点放在了什么地方?

将来代数在解决问题时,将很少注意代数的技巧,因为通过便携式机器和预编程序软件就能做这些事情。但是却需要提高对代数两个方面的重视:能够被应用的代数;代数作为一种交流的语言…….毫无疑问,将来的代数很少包含技能特性,而更多包含应用和表示特性。

按照通常的理解,学习单项式、多项式的定义,就是先把单项式、多项式的定义告诉给学生,然后举一些例子让学生判断哪些是单项式、哪些是多项式,甚至还举出一些类似“2x-x是单项式还是多项式”的问题,引起学生之间的辩论,以期学生能够准确地掌握概念。北师大版教材,不但没有大量引进这方面的例题,反而创设情境,讨论射进房间阳光部分的面积问题。

首先,对单项式、多项式的定义,教材采用了描述性的方法,并没有严格定义。在这一阶段,学生能够基本掌握单项式、多项式的特点就可以了。随着学习的进一步深入,学生会逐渐形成自己的判断。

所以,对于类似单项式、多项式这样的概念,教材一贯本着“淡化形式、注重实质”的做法,不做形式上的讨论。

其次,代数式是表示的工具,代数式能够把一类问题中的数量关系一般性地表示出来。此我们学习代数式,就一定要懂得和会用代数式去表示,因此教材花时间创设情境,让学生用代数式表示或代数式应用过程中理解代数式的意义、理解整式的意义。这不但没有冲淡主题、冲淡数学,而恰恰是突出了代数式的本质,力图使学生学习最有价值的数学。

4. 教材在引入整式的运算时,为什么要创设问题情境,**“两位数的加法问题”,这岂不是舍近求远、冲淡主题吗?

代数式运算通常是繁琐而又乏味的,学生也通常不知道为什么要进行代数式运算。

教材在引入代数式运算法则时,创设问题情境,一方面让学生感受到代数式的运算是有意义的,是解决问题的需要;另一方面又使学生在解决问题中思考、类比、归纳运算法则,感受运算法则的合理性,从而帮助记忆。如“两位数的加法问题”“试验田面积表示问题”等。

因此,创设问题情境,没有冲淡主题、没有冲淡数学,而是突出了代数式运算的意义、突出了学生对代数式运算法则的理解,是从“让学生自己去建构知识的意义”的角度出发的。

5.教材对代数式运算的看法如何?整式运算的难度有哪些降低?

代数式运算是解决问题、进行推理的需要,是学生进一步学习的重要基础,能够进行基本的代数式的加、减、乘、除运算应该属于代数的基本功,是学生运算能力的重要组成部分。

在进行代数式运算时,不仅可以发展学生的运算能力,还可以使学生逐步学习和理解代数的方法,并发展学生的符号意识。

学生需要通过一定量的练习,掌握一些基本的代数式运算,为此,教材也安排了适量的练习,教师可以根据学生的学习情况灵活处理。

根据《标准》,多项式的乘法最多只要求两个一次式的乘积,乘法公式也只要求掌握两个数的和或差的完全平方及平方差公式。除法只要求单项式除以单项式,多项式除以单项式并且结果是整式。

我们说,学生的数学基础如何,并不简单地在于学生会算多复杂的多项式乘法或记住多少个乘法公式,只抓住运算量和运算难度的问题就谈基础的降低是片面的。事实上“将来代数在解决问题时,将很少注意代数的技巧…….毫无疑问,将来的代数很少包含技能特性,而更多包含应用和表示特性。”确切地,我们将理解算理、依据问题的特征选择算法、按照既定的算法从事运算、确认结果的合理性。

等方面均视为表示运算能力强与弱的指标。

教材明显加强了代数式的“表示和应用特性”,如前所述,还明显加强了学生自己对运算法则的归纳、强调对算理的理解,通过这些理解性的数学活动,应该说学生对代数的了解加深了,数学基础加强了,数学认识提高了。

6.传统上,学习平行线就是学习逻辑推理证明的开始。本套教材为什么要用直观操作加“说理”的方法?为什么不一开始就进行推理证明呢?

几何是数学中这样的一个部分,其中视觉思维占主导地位。

几何直觉仍是增进数学理解力的很有效的途径,而且它可以使人增加勇气。提高修养,需知我不是强要别人增加任何一门几何课,我只是请求尽可能广泛地应用各种水平的几何思想。(m.atiyah)

本套教材的几何推理证明的体系安排是分三个层次,一是直观推理(主要在第一册);二是直观推理与简单逻辑推理的结合(主要在。

二、三、四册);三是严格的演绎推理(四、五册)。这样做主要是从学生的抽象思维水平考虑的。因此在第二册中,运用直观的方法适当辅助以说理或推理,使学生了解有关平行线以及后面的三角形的有关性质等,等到四册及五册时在一定的公理的基础上给出严格的证明。

我们知道,学生学习几何,不只是学习演绎推理,学生图形思维的发展不只有一个水平,正如m.atiyah所说,“尽可能广泛地应用各种水平的几何思想。”

几何是数学中视觉思维占主导地位的部分,因此学生学习几何,就要对图形本身的性质进行研究,要对图形之间的位置关系等进行研究。这意味着几何的学习,不仅有从中学习“逻辑”的一面,还有从中发展“直觉”,也就是空间观念的一面,即对几何的学习不仅有演绎推理,还有合情推理。尽管合情推理不严格,但也是几何思想的一个水平。

在合情推理的基础上,再进行严格的演绎推理,通常也是人们发现真理的途径。

7.尺规作图写作法是学生感到比较困难的问题,教材对本阶段的尺规作图要求到什么程度?学生先不写作法行不行?

此章中涉及的尺规作图的作法对这个年龄段的学生来说都较为复杂,对学生来说有一定的难度。因此在教学的初期,对于较为简单的作图问题(如作一条线段等于已知线段),应当要求学生能够写出作法,而对过程比较多的,如果学生有困难,可暂时不用要求学生写,只要能够按步骤作出并保留作图痕迹、用自己的语言表述出即可,对作法的书写可延迟到以后几个学期的学习中再要求。

8.“认识百万分之一”这节课好象没有知识点,那么学了这个内容后,教材期望能够留给学生的是什么?

这节课的立意主要是发展学生的数感。“数感”这一词的含义包括“能在具体的情境中把握数的相对大小关系”。通常,“百万分之一”在现实生活中是一个比较小的数量,这节课主要就是使学生在具体的情境中,借助一些活动,通过比例推理或估算的方法感受百万分之一的大小,并在感知具体数量大小的同时,获得如何进行估算、如何使估算更能接近精确的方法,发展学生的推理能力。

这样,将来在类似的情况下,学生就能够对数的大小有认识并能够用自己的方式对数的大小进行刻画。

这节课的内容提供给学生一个进行思考、形成方法的机会。

发展学生的数感,不是单靠。

一、两节课就可以实现的,而是需要一个过程、是一个长期的目标,如我们在第一册中学习了“认识一百万”,还有在“幂”运算中也引导学生感受数量级的变化等。

9.掷一枚均匀的硬币,由每种结果出现的可能性是一样的,我们知道正面朝上的概率是。这样的结果通过掷硬币的试验基本上是得不到的,(参看历史上的多次试验,我们可以这样说)那么为什么教材还要安排学生掷硬币的活动?

本章主要处理等可能性的问题,不管是掷硬币、掷骰子、摸球,还是转盘,都可以通过对具体情况进行分析后,计算出其比率——概率。当然,得到结果固然是重要的,但对。

于学生来讲,对结果的理解,即对概率意义的理解是更重要的。如虽然掷硬币正面朝上的概率是,但是在两次掷硬币中,不一定有一次正面朝上。对于这件事情,教材不希望采取直接告诉学生的办法,而是通过活动让学生自己感受概率的意义。

同时,让学生分组做实验,并积累较多组的实验数据,有利于学生感受概率的意义。

事实上,这就是我们所说的,学习概率的目的不只是要学会计算,更重要的是要懂得概率的意义、发展学生的随机观念。

10.教材给出了几种进行简单说理时的表示方法,如用自然语言或在图上标注等。这些写法是不规范的,这给教师批改作业带来很多麻烦。重要的是,这种不统一是否会在学生中造成混乱?

为什么不现在就教给学生严格规范的写法?

按照本套教材的系统,从八年级下册才给出公理化证明的体系,并开始严格的演绎推理证明和要求学生规范地进行书写。

在没有给出公理化体系之前,进行演绎推理证明是缺乏依据的,因此教材的要求是先让学生“说理”,强调学生思维的条理性和对推理过程的理解,再逐步过渡到演绎推理证明。

可以说,在这个阶段,学生的表达形式可以多样,但思维的条理性是统一要求的。

学生对演绎推理证明的学习,是需要一定的过程的。“甚至到现在一想到欧几里得,我都得擦擦满是汗水的前额”,瑞典诗人c.m.贝尔曼写道。

七年级数学教学几点建议

初中数学和小学相比 知识量相对较大 知识综合性增强 知识系统性紧凑 对能力要求加大 如观察 阅读 记忆 思维 想象 操作 表达等能力。所以,同学们了解科学的学习方法和习惯非常重要。一 新课程背景下几种学习习惯的培养 1 培养 会看数学书 的习惯 通过看数学书,初步理解教材的基本内容和思路,找出教材中...

七年级数学教学几点建议

初中数学和小学相比 知识量相对较大 知识综合性增强 知识系统性紧凑 对能力要求加大 如观察 阅读 记忆 思维 想象 操作 表达等能力。所以,同学们了解科学的学习方法和习惯非常重要。一 新课程背景下几种学习习惯的培养 1 培养 会看数学书 的习惯 通过看数学书,初步理解教材的基本内容和思路,找出教材中...

七年级数学相交线教学建议

3.注重知识的前后衔接。对顶角相等的性质是利用上学期学习的 同角的补角相等 的性质推得的 垂直的概念承接了上一学段学过的概念。而同位角 内错角 同旁内角的学习是为学习平行线做准备的,起到了承上启下的作用。4.对顶角 邻补角教学的建议。可让学生在把观察到的图像抽象为几何图形 两相交直线,让学生寻找其中...