新六年级奥数暑期班第十三次教案

发布 2023-02-13 17:02:28 阅读 8680

数的整除性(一)

三、四年级已经学习了能被2,3,5和4,8,9,6以及11整除的数的特征,也学习了一些整除的性质。这两讲我们系统地复习一下数的整除性质,并利用这些性质解答一些问题。

数的整除性质主要有:

(1)如果甲数能被乙数整除,乙数能被丙数整除,那么甲数能被丙数整除。

(2)如果两个数都能被一个自然数整除,那么这两个数的和与差都能被这个自然数整除。

(3)如果一个数能分别被几个两两互质的自然数整除,那么这个数能被这几个两两互质的自然数的乘积整除。

(4)如果一个质数能整除两个自然数的乘积,那么这个质数至少能整除这两个自然数中的一个。

(5)几个数相乘,如果其中一个因数能被某数整除,那么乘积也能被这个数整除。

灵活运用以上整除性质,能解决许多有关整除的问题。

例1 在□里填上适当的数字,使得七位数□7358□□能分别被9,25和8整除。

分析与解:分别由能被9,25和8整除的数的特征,很难推断出这个七位数。因为9,25,8两两互质,由整除的性质(3)知,七位数能被 9×25×8=1800整除,所以七位数的个位,十位都是0;再由能被9整除的数的特征,推知首位数应填4。

这个七位数是4735800。

例2 由2000个1组成的数111…11能否被41和271这两个质数整除?

分析与解:因为41×271=11111,所以由每5个1组成的数11111能被41和271整除。按“11111”把2000个1每五位分成一节, 2000÷5=400,就有400节,因为2000个1组成的数11…11能被11111整除,而11111能被41和271整除,所以根据整除的性质(1)可知,由2000个1组成的数111…11能被41和271整除。

例3 现有四个数:76550,76551,76552,76554。能不能从中找出两个数,使它们的乘积能被12整除?

分析与解:根据有关整除的性质,先把12分成两数之积:12=12×1=6×2=3×4。

要从已知的四个数中找出两个,使其积能被12整除,有以下三种情况:

(1)找出一个数能被12整除,这个数与其它三个数中的任何一个的乘积都能被12整除;

(2)找出一个数能被6整除,另一个数能被2整除,那么它们的积就能被12整除;

(3)找出一个数能被4整除,另一个数能被3整除,那么它们的积能被12整除。

容易判断,这四个数都不能被12整除,所以第(1)种情况不存在。

对于第(2)种情况,四个数中能被6整除的只有76554,而76550,76552是偶数,所以可以选76554和76550,76554和76552。

对于第(3)种情况,四个数中只有76552能被4整除,76551和76554都能被3整除,所以可以选76552和76551,76552和76554。

综合以上分析,去掉相同的,可知两个数的乘积能被12整除的有以下三组数:76550和76554, 76552和76554, 76551和 76552。

例4 在所有五位数中,各位数字之和等于43且能够被11整除的数有哪些?

分析与解:从题设的条件分析,对所求五位数有两个要求:

①各数位上的数字之和等于43;

②能被11整除。

因为能被11整除的五位数很多,而各数位上的数字之和等于43的五位数较少,所以应选择①为突破口。有两种情况:

(1)五位数由一个7和四个9组成;

(2)五位数由两个8和三个9组成。

上面两种情况中的五位数能不能被11整除?9,8,7如何摆放呢?根据被11整除的数的特征,如果奇数位数字之和是27,偶数位数字之和是16,那么差是11,就能被11整除。

满足这些要求的五位数是: 97999,99979, 98989。

例5 能不能将从1到10的各数排成一行,使得任意相邻的两个数之和都能被3整除?

分析与解:10个数排成一行的方法很多,逐一试验显然行不通。我们采用反证法。

假设题目的要求能实现。那么由题意,从前到后每两个数一组共有5组,每组的两数之和都能被3整除,推知1~10的和也应能被3整除。实际上,1~10的和等于55,不能被3整除。

这个矛盾说明假设不成立,所以题目的要求不能实现。

练习5班有多少名学生?

2.能不能将从1到9的各数排成一行,使得任意相邻的两个数之和都能被3整除?

答案。1.是。提示:7018和1392分别是4205与2813的和与差。

提示:已知这两个数的积可以整除4875,说明这两个数都是4875的因数。4875= 3×5×5×5×13,用这些因子凑成两个数,使它们的和是64,显然这两个数是3×13=39和5×5=25。

它们的差是39-25=14。

3.19。提示:先后填入的三个数依次是7,8,4。

4.123654和321654。

提示:由题意知,b,d,f是偶数,e= 5,所以a,c只能是1和3。

6,进而知f=4,所求数为123654和321654。

5.55人。

提示:总分等于平均分乘以学生人数,因为平均分90=9×10,所以总。

人)。6.不能。

提示:假设能。因为前两个数的和能被3整除,第2、第3个数的和也能被3整除,所以第1、第3两个数除以3的余数相同。

类似可知,排在第1,3,5,7,9位的数除以3的余数都相同。在1~9中,除以3的余数相同的数只有3个,不可能有5个。这个矛盾说明假设不成立。

新六年级奥数暑期班第十六次教案

奇偶性 二 例1用0 9这十个数码组成五个两位数,每个数字只用一次,要求它们的和是奇数,那么这五个两位数的和最大是多少?分析与解 有时题目的要求比较多,可先考虑满足部分要求,然后再调整,使最后结果达到全部要求。这道题的几个要求中,满足 和最大 是最容易的。暂时不考虑这五个数的和是奇数的要求。要使组成...

新六年级奥数暑期班第十一次教案

在例1 例2中,各有三个约束条件,我们先解除两个约束条件,求只满足一个约束条件的数,然后再逐步加上第二个 第三个约束条件,最终求出了满足全部三个约束条件的数。这种先放宽条件,再逐步增加条件的解题方法,叫做逐步约束法。例3 在10000以内,除以3余2,除以7余3,除以11余4的数有几个?解 满足 除...

新六年级奥数暑期班第十四次教案

例6 判断下列各数能否被27或37整除 解 1 2673135 2,673,135,2 673 135 810。因为810能被27整除,不能被37整除,所以2673135能被27整除,不能被37整除。2,109大于三位数,可以再对2,109的各节求和,2 109 111。因为111能被37整除,不能...