新六年级奥数暑期班第十六次教案

发布 2023-02-13 17:01:28 阅读 3378

奇偶性(二)

例1用0~9这十个数码组成五个两位数,每个数字只用一次,要求它们的和是奇数,那么这五个两位数的和最大是多少?

分析与解:有时题目的要求比较多,可先考虑满足部分要求,然后再调整,使最后结果达到全部要求。

这道题的几个要求中,满足“和最大”是最容易的。暂时不考虑这五个数的和是奇数的要求。

要使组成的五个两位数的和最大,应该把十个数码中最大的五个分别放在十位上,即十位上放5,6,7,8,9,而个位上放0,1,2,3,4。根据奇数的定义,这样组成的五个两位数中,有两个是奇数,即个位是1和3的两个两位数。

要满足这五个两位数的和是奇数,根据奇、偶数相加减的运算规律,这五个数中应有奇数个奇数。现有两个奇数,即个位数是1,3的两位数。所以五个数的和是偶数,不合要求,必须调整。

调整的方法是交换十位与个位上的数字。要使五个数有奇数个奇数,并且五个数的和尽可能最大,只要将个位和十位上的一个奇数与一个偶数交换,并且交换的两个的数码之差尽可能小,由此得到交换5与4的位置。满足题设要求的五个两位数的十位上的数码是4,6,7,8,9,个位上的数码是0,1,2,3,5,所求这五个数的和是(4+6+7+8+9)×10+(0+1+2+3+5)=351。

例2 7只杯子全部杯口朝上放在桌子上,每次翻转其中的2只杯子。能否经过若干次翻转,使得7只杯子全部杯口朝下?

分析与解:盲目的试验,可能总也找不到要领。如果我们分析一下每次翻转后杯口朝上的杯子数的奇偶性,就会发现问题所在。

一开始杯口朝上的杯子有7只,是奇数;第一次翻转后,杯口朝上的变为5只,仍是奇数;再继续翻转,因为只能翻转两只杯子,即只有两只杯子改变了上、下方向,所以杯口朝上的杯子数仍是奇数。类似的分析可以得到,无论翻转多少次,杯口朝上的杯子数永远是奇数,不可能是偶数0。也就是说,不可能使7只杯子全部杯口朝下。

例3 有m(m≥2)只杯子全部口朝下放在桌子上,每次翻转其中的(m-1)只杯子。经过若干次翻转,能使杯口全部朝上吗?

分析与解:当m是奇数时,(m-1)是偶数。由例2的分析知,如果每次翻转偶数只杯子,那么无论经过多少次翻转,杯口朝上(下)的杯子数的奇偶性不会改变。

一开始m只杯子全部杯口朝下,即杯口朝下的杯子数是奇数,每次翻转(m-1)即偶数只杯子。无论翻转多少次,杯口朝下的杯子数永远是奇数,不可能全部朝上。

当m是偶数时,(m-1)是奇数。为了直观,我们先从m= 4的情形入手观察,在下表中用∪表示杯口朝上,∩表示杯口朝下,每次翻转3只杯子,保持不动的杯子用*号标记。翻转情况如下:

由上表看出,只要翻转4次,并且依次保持第1,2,3,4只杯子不动,就可达到要求。一般来说,对于一只杯子,要改变它的初始状态,需要翻奇数次。对于m只杯子,当m是偶数时,因为(m-1)是奇数,所以每只杯子翻转(m-1)次,就可使全部杯子改变状态。

要做到这一点,只需要翻转m次,并且依次保持第1,2,…,m只杯子不动,这样在m次翻转中,每只杯子都有一次没有翻转,即都翻转了(m-1)次。

综上所述:m只杯子放在桌子上,每次翻转(m-1)只。当m是奇数时,无论翻转多少次,m只杯子不可能全部改变初始状态;当m是偶数时,翻转m次,可以使m只杯子全部改变初始状态。

例4 一本**集编入15篇文章,这些文章排版后的页数分别是1,2,3,…,15页。如果将这些文章按某种次序装订成册,并统一编上页码,那么每篇文章的第一面是奇数页码的最多有几篇?

分析与解:可以先研究排版一本书,各篇文章页数是奇数或偶数时的规律。一篇有奇数页的文章,它的第一面和最后一面所在的页码的奇偶性是相同的,即排版奇数页的文章,第一面是奇数页码,最后一面也是奇数页码,而接下去的另一篇文章的第一面是排在偶数页码上。

一篇有偶数页的文章,它的第一面和最后一面所在的页码的奇偶性是相异的,即排版偶数页的文章,第一面是奇(偶)数页码,最后一面应是偶(奇)数页码,而紧接的另一篇文章的第一面又是排在奇(偶)数页码上。

以上说明本题的解答主要是根据奇偶特点来处理。

题目要求第一面排在奇数页码的文章尽量多。首先考虑有偶数页的文章,只要这样的第一篇文章的第一面排在奇数页码上(如第1页),那么接着每一篇有偶数页的文章都会是第一面排在奇数页码上,共有7篇这样的文章。然后考虑有奇数页的文章,第一篇的第一面排在奇数页码上,第二篇的第一面就会排在偶数页码上,第三篇的第一面排在奇数页码上,如此等等。

在8篇奇数页的文章中,有4篇的第一面排在奇数页码上。因此最多有7+4=11(篇)文章的第一面排在奇数页码上。

例5 有大、小两个盒子,其中大盒内装1001枚白棋子和1000枚同样大小的黑棋子,小盒内装有足够多的黑棋子。阿花每次从大盒内随意摸出两枚棋子,若摸出的两枚棋子同色,则从小盒内取一枚黑棋子放入大盒内;若摸出的两枚棋子异色,则把其中白棋子放回大盒内。问:

从大盒内摸了1999次棋子后,大盒内还剩几枚棋子?它们都是什么颜色?

分析与解:大盒内装有黑、白棋子共1001+1000=2001(枚)。

因为每次都是摸出2枚棋子放回1枚棋子,所以每摸一次少1枚棋子,摸了1999次后,还剩2001-1999=2(枚)棋子。

从大盒内每次摸2枚棋子有以下两种情况:

(1)所摸到的两枚棋子是同颜色的。此时从小盒内取一枚黑棋子放入大盒内。当所摸两枚棋子同是黑色,这时大盒内少了一枚黑棋子;当所摸两枚棋子同是白色,这时大盒内多了一枚黑棋子。

(2)所摸到的两枚棋子是不同颜色的,即一黑一白。这时要把拿出的白棋子放回到大盒,大盒内少了一枚黑棋子。

综合(1)(2),每摸一次,大盒内的黑棋子总数不是少一枚就是多一枚,即改变了黑棋子数的奇偶性。原来大盒内有1000枚即偶数枚黑棋子,摸了1999次,即改变了1999次奇偶性后,还剩奇数枚黑棋子。因为大盒内只剩下2枚棋子,所以最后剩下的两枚棋子是一黑一白。

例6 一串数排成一行:1,1,2,3,5,8,13,21,34,55,…

到这串数的第1000个数为止,共有多少个偶数?

分析与解:首先分析这串数的组成规律和奇偶数情况。

这串数的规律是,从第三项起,每一个数等于前两个数的和。根据奇偶数的加法性质,可以得出这串数的奇偶性:

奇,奇,偶,奇,奇,偶,奇,奇,偶,……

容易看出,这串数是按“奇,奇,偶”每三个数为一组周期变化的。 1000÷3=333……1,这串数的前1000个数有333组又1个数,每组的三个数中有1个偶数,并且是第3个数,所以这串数到第1000个数时,共有333个偶数。

练习 1. 在黑板上写出三个整数,然后擦去一个换成所剩两数之和,这样继续操作下去,最后得到88,66,99。问:原来写的三个整数能否是1,3,5?

2.将888件礼品分给若干个小朋友。问:分到奇数件礼品的小朋友是奇数还是偶数?

答案。1.对。提示:因为平方数能被4整除或除以4余1,而形如111…11的数除以4的余数与11除以4的余数相同,余3,所以不是平方数。

2.5个。提示:与例4类似分析可知,先排9个奇数页的故事,其中有5个从奇数页开始,再排8个偶数页的故事,都是从偶数页码开始。

3.3次。提示:见下表。

4.偶数。提示:这行数的前面若干个数是:0,1,3,8,21,55,144,377,987,2584,…

这些数的奇偶状况是:偶,奇,奇,偶,奇,奇,偶,奇,奇,……

从前到后按一偶二奇的顺序循环出现。70÷3=23……1,第70个数是第24组数的第一个数,是偶数。

5.偶数。提示:号码总和等于100加上小明号码的2倍。

6.不能。提示:如果原来写的是1,3,5,那么从第一次改变后,三个数永远是两个奇数一个偶数。

7.偶数。提示:如果是奇数,那么分到奇数件礼品的小朋友得到的礼品总数是奇数,而分到偶数件礼品的小朋友得到的礼品总数是偶数,于是得出所有礼品总数是奇数,与888件礼品矛盾。

新六年级奥数暑期班第十三次教案

数的整除性 一 三 四年级已经学习了能被2,3,5和4,8,9,6以及11整除的数的特征,也学习了一些整除的性质。这两讲我们系统地复习一下数的整除性质,并利用这些性质解答一些问题。数的整除性质主要有 1 如果甲数能被乙数整除,乙数能被丙数整除,那么甲数能被丙数整除。2 如果两个数都能被一个自然数整除...

新六年级奥数暑期班第十一次教案

在例1 例2中,各有三个约束条件,我们先解除两个约束条件,求只满足一个约束条件的数,然后再逐步加上第二个 第三个约束条件,最终求出了满足全部三个约束条件的数。这种先放宽条件,再逐步增加条件的解题方法,叫做逐步约束法。例3 在10000以内,除以3余2,除以7余3,除以11余4的数有几个?解 满足 除...

新六年级奥数暑期班第十四次教案

例6 判断下列各数能否被27或37整除 解 1 2673135 2,673,135,2 673 135 810。因为810能被27整除,不能被37整除,所以2673135能被27整除,不能被37整除。2,109大于三位数,可以再对2,109的各节求和,2 109 111。因为111能被37整除,不能...