1、“环形跑道”,也是称为封闭回路,它可以是圆形的、长方形的、三角形的,也可以是由长方形和两个半圆组成的运动场形状。解题时,我们可以运动“转化法”把线路“拉直”或“截断”,从布把物体在“环形路道”上的运动转化为我们熟悉的物体在直线上的运动。
2、在行程问题中,与环形有关的行程问题的解决方法与一般行程问题的方法类似,但有两点值得注意:一是两人同地背向运动,从第一次相遇到下一次相遇共行一个全程;而是同地、同向运动时,甲追上乙时甲比乙多行一个行程。
例1:甲、乙、丙三人沿着湖边散步,同时从湖边一固定点出发。甲按顺时针方向行走,乙与丙按逆时针方向行走。
甲第一次遇到乙后分钟遇到丙,再过分钟第二次遇到乙。已知乙的速度是甲的,湖的周长为600米,求丙的速度。
例2.小张和小王各自以一定的速度在周长为500米的环形跑道上跑步。小王每分跑180米。
1)小张和小王同时从一个地点出发,反向跑步,75秒后两人相遇,求小张的速度。
2)小张和小王同时从同一地点出发,沿同一方向跑步,经过多少分两人第一次在途中相遇?
例3.在一个600米长的环形跑道上,兄妹两人同时从同一起点都按顺时针方向跑步,每隔12分相遇一次,若两人速度不变,还是在原出发点同时出发,哥哥改为按逆时针方向跑,则每隔4分相遇一次。两人跑一圈各要几分?
1、在300米长的环形跑道上,甲、乙两人同时同向并排起跑,甲平均每秒跑5米,乙平均每秒跑4.4米。两人起跑后的第一次相遇在起跑线前多少米?
2、兄、妹二人在周长为30米的圆形小池边玩。从同一地点同时背向绕水池而行。兄每秒走1.3米,妹每秒走1.2米。他们第10次相遇时,妹还要走多少米才能回到出发点?
3、如图,a、b是圆的直径的两端,小张在a点,小王在b点,同时出发反向而行,他们在c点第一次相遇,c点离a点80米;在d点第二次相遇,d点离b点60米。求这个圆的周长。
4.一条环形跑道长600米,甲练习骑自行车,平均每分行550米,乙练习长跑,平均每分跑250米。两人同时从同一地点同向出发,经过多少分两人相遇?
5.甲、乙两人环湖跑步,环湖一周长是400米,乙每分跑80米,甲的速度是乙的1.25倍。现在两人同时向前跑,且起跑时甲在乙的前面100米。多少分后两人相遇?
6.甲、乙两人同时从a点背向出发,沿400米的环形跑道行走。甲每分钟走80米,乙每分钟走50米。两人至少经过多少分钟才能在a点相遇?
小升初奥数行程问题基础行程问题六年级行程教案讲义
行程问题。一 知识要点 我们把研究路程 速度 时间以及这三者之间关系的一类问题,称为行程问题。行程问题内容丰富 变化多端,在数学竞赛中是常见的一类应用题。根据物体运动的起始位置,运动方向等因素,行程问题分为相遇问题和追及问题两种基本类型。基本关系式 1 相遇问题 速度和 相遇时间 相遇路程 一般是两...
小升初奥数行程问题基础行程问题六年级行程教案讲义
行程问题。一 知识要点 我们把研究路程 速度 时间以及这三者之间关系的一类问题,称为行程问题。行程问题内容丰富 变化多端,在数学竞赛中是常见的一类应用题。根据物体运动的起始位置,运动方向等因素,行程问题分为相遇问题和追及问题两种基本类型。基本关系式 1 相遇问题 速度和 相遇时间 相遇路程 一般是两...
六年级奥数行程问题
行程问题 二 教学目标 1 能够利用以前学习的知识理清变速变道问题的关键点 2 能够利用线段图 算术 方程方法解决变速变道等综合行程题 3 变速变道问题的关键是如何处理 变 4 掌握寻找等量关系的方法来构建方程,利用方程解行程题 知识精讲 比例的知识是小学数学最后一个重要内容,从某种意义上讲仿佛扮演...