六年级奥数第八讲 行程问题 二

发布 2023-02-12 18:01:28 阅读 3578

第八讲行程问题(二)

模块。一、时间相同速度比等于路程比。

例 1】 甲、乙二人分别从 a、 b 两地同时出发,相向而行,甲、乙的速度之比是 4 : 3,二人相遇后继续行进,甲到达 b 地和乙到达 a地后都立即沿原路返回,已知二人第二次相遇的地点距第一次相遇的地点 30千米,则 a、 b 两地相距多少千米?

1【解析】 两个人同时出发相向而行,相遇时时间相等,路程比等于速度之比,即两个人相遇时所走过的路程比为 4 : 3.第一次相遇时甲走了全程的4/7;第二次相遇时甲、乙两个人共走了 3个全程,三个全程中甲走了个全程,与第一次相遇地点的距离为个全程.所以 a、 b两地相距(千米).

例 2】 b地在a,c两地之间.甲从b地到a地去送信,甲出发10分后,乙从b地出发到c地去送另一封信,乙出发后10分,丙发现甲、乙刚好把两封信拿颠倒了,于是他从b地出发骑车去追赶甲和乙,以便把信调过来.已知甲、乙的速度相等,丙的速度是甲、乙速度的3倍,丙从出发到把信调过来后返回b地至少要用多少时间。

1【解析】 根据题意当丙发现甲、乙刚好把两封信拿颠倒了此时甲、乙位置如下:

因为丙的速度是甲、乙的3倍,分步讨论如下:

1) 若丙先去追及乙,因时间相同丙的速度是乙的3倍,比乙多走两倍乙走需要10分钟,所以丙用时间为:10÷(3-1)=5(分钟)此时拿上乙拿错的信。

当丙再回到b点用5分钟,此时甲已经距b地有10+10+5+5=30(分钟),同理丙追及时间为30÷(3-1)=15(分钟),此时给甲应该送的信,换回乙应该送的信。

在给乙送信,此时乙已经距b地:10+5+5+15+15=50(分钟),此时追及乙需要:50÷(3-1)=25(分钟),返回b地需要25分钟。

所以共需要时间为5+5+15+15+25+25=90(分钟)

2) 同理先追及甲需要时间为120分钟。

例 3】 (圆明杯”数学邀请赛) 甲、乙两人同时从、两点出发,甲每分钟行米,乙每分钟行米,出发一段时间后,两人在距中点的处相遇;如果甲出发后在途中某地停留了分钟,两人将在距中点的处相遇,且中点距、距离相等,问、两点相距多少米?

分析】 甲、乙两人速度比为,相遇的时候时间相等,路程比等于速度之比,相遇时甲走了全程的,乙走了全程的.第二次甲停留,乙没有停留,且前后两次相遇地点距离中点相等,所以第二次乙行了全程的,甲行了全程的.由于甲、乙速度比为,根据时间一定,路程比等于速度之比,所以甲行走期间乙走了,所以甲停留期间乙行了,所以、两点的距离为(米).

例 4】 甲、乙两车分别从 a、 b 两地同时出发,相向而行.出发时,甲、乙的速度之比是 5 : 4,相遇后甲的速度减少 20%,乙的速度增加 20%.这样当甲到达 b 地时,乙离 a地还有 10 千米.那么 a、b 两地相距多少千米?

1【解析】 两车相遇时甲走了全程的,乙走了全程的,之后甲的速度减少 20%,乙的速度增加 20%,此时甲、乙的速度比为,所以甲到达 b 地时,乙又走了,距离 a地,所以 a、 b 两地的距离为(千米).

例 5】 早晨,小张骑车从甲地出发去乙地.下午 1 点,小王开车也从甲地出发,前往乙地.下午 2 点时两人之间的距离是 15 千米.下午 3 点时,两人之间的距离还是 l5 千米.下午 4 点时小王到达乙地,晚上 7 点小张到达乙地.小张是早晨几点出发?

1【解析】 从题中可以看出小王的速度比小张块.下午 2 点时两人之间的距离是 l5 千米.下午 3 点时,两人之间的距离还是 l5 千米,所以下午 2 点时小王距小张 15 千米,下午 3 点时小王超过小张 15千米,可知两人的速度差是每小时 30 千米.由下午 3 点开始计算,小王再有 1 小时就可走完全程,在这 1 小时当中,小王比小张多走 30 千米,那小张 3 小时走了15 30 45 千米,故小张的速度是 45 ÷3 =15千米/时,小王的速度是15 +30 =45千米/时.全程是 45 ×3 =135千米,小张走完全程用了135 +15= 9小时,所以他是上午 10 点出发的。

例 6】 从甲地到乙地,需先走一段下坡路,再走一段平路,最后再走一段上坡路。其中下坡路与上坡路的距离相等。陈明开车从甲地到乙地共用了 3 小时,其中第一小时比第二小时多走 15 千米,第二小时比第三小时多走 25 千米。

如果汽车走上坡路比走平路每小时慢 30 千米,走下坡路比走平路每小时快 15 千米。那么甲乙两地相距多少千米?

1【解析】 ⑴由于3个小时中每个小时各走的什么路不明确,所以需要先予以确定.

从甲地到乙地共用3小时,如果最后一小时先走了一段平路再走上坡路,也就是说走上坡路的路程不需要1小时,那么由于下坡路与上坡路距离相等,而下坡速度更快,所以下坡更用不了1小时,这说明第一小时既走完了下坡路,又走了一段平路,而第二小时则是全在走平路.这样的话,由于下坡速度大于平路速度,所以第一小时走的路程小于以下坡的速度走1小时的路程,而这个路程恰好比以平路的速度走1小时的路程(即第二小时走的路程)多走15千米,所以这样的话第一小时走的路程比第二小时走的路程多走的少于15千米,不合题意,所以假设不成立,即第三小时全部在走上坡路.

如果第一小时全部在走下坡路,那么第二小时走了一段下坡路后又走了一段平路,这样第二小时走的路程将大于以平路的速度走1小时的路程,而第一小时走的路程比第二小时走的路程多走的少于15千米,也不合题意,所以假设也不成立,故第一小时已走完下坡路,还走了一段平路.

所以整个行程为:第一小时已走完下坡路,还走了一段平路;第二小时走完平路,还走了一段上坡路;第三小时全部在走上坡路.

由于第二小时比第三小时多走25千米,而走平路比走上坡路的速度快每小时30千米.所以第二小时内用在走平路上的时间为小时,其余的小时在走上坡路;

因为第一小时比第二小时多走了15千米,而小时的下坡路比上坡路要多走千米,那么第一小时余下的下坡路所用的时间为小时,所以在第一小时中,有小时是在下坡路上走的,剩余的小时是在平路上走的.

因此,陈明走下坡路用了小时,走平路用了小时,走上坡路用了小时.

因为下坡路与上坡路的距离相等,所以上坡路与下坡路的速度比是.那么下坡路的速度为千米/时,平路的速度是每小时千米,上坡路的速度是每小时千米.

那么甲、乙两地相距(千米).

模块。二、路程相同速度比等于时间的反比。

例 7】 甲、乙两人同时从地出发到地,经过3小时,甲先到地,乙还需要1小时到达地,此时甲、乙共行了35千米.求,两地间的距离.

分析】 甲用3小时行完全程,而乙需要4小时,说明两人的速度之比为,那么在3小时内的路程之比也是;又两人路程之和为35千米,所以甲所走的路程为千米,即,两地间的距离为20千米.

例 8】 在一圆形跑道上,甲从 a 点、乙从 b 点同时出发反向而行,6 分后两人相遇,再过4 分甲到达 b 点,又过 8 分两人再次相遇。甲、乙环行一周各需要多少分?

1【解析】 由题意知,甲行 4 分相当于乙行 6 分。(抓住走同一段路程时间或速度的比例关系)

从第一次相遇到再次相遇,两人共走一周,各行 12 分,而乙行 12 分相当于甲行 8 分,所以甲环行一周需 12+8=20(分),乙需 20÷4×6=30(分).

例 9】 上午 8 点整,甲从 a地出发匀速去 b 地,8 点 20 分甲与从 b 地出发匀速去 a地的乙相遇;相遇后甲将速度提高到原来的 3 倍,乙速度不变;8 点 30 分,甲、乙两人同时到达各自的目的地.那么,乙从 b 地出发时是 8 点几分.

1【解析】 甲、乙相遇时甲走了 20 分钟,之后甲的速度提高到原来的 3 倍,又走了 10 分钟到达目的地,根据路程一定,时间比等于速度的反比,如果甲没提速,那么后面的路甲需要走10× 3= 30分钟,所以前后两段路程的比为 20 : 30 =2 : 3,由于甲走 20 分钟的路程乙要走 10 分钟,所以甲走 30 分钟的路程乙要走 15 分钟,也就是说与甲相遇时乙已出发了 15 分钟,所以乙从 b 地出发时是 8 点5 分.

例 10】 小芳从家到学校有两条一样长的路,一条是平路,另一条是一半上坡路,一半下坡路.小芳上学走这两条路所用的时间一样多.已知下坡的速度是平路的1.6 倍,那么上坡的速度是平路速度的多少倍?

1【解析】 设小芳上学路上所用时间为 2,那么走一半平路所需时间是1.由于下坡路与一半平路的长度相同,根据路程一定,时间比等于速度的反比,走下坡路所需时间是,因此,走上坡路需要的时间是,那么,上坡速度与平路速度的比等于所用时间的反比,为,所以,上坡速度是平路速度的倍.

例 11】 一辆汽车从甲地开往乙地,每分钟行750米,预计50分钟到达.但汽车行驶到路程的时,出了故障,用5分钟修理完毕,如果仍需在预定时间内到达乙地,汽车行驶余下的路程时,每分钟必须比原来快多少米?

分析】 当以原速行驶到全程的时,总时间也用了,所以还剩下分钟的路程;修理完毕时还剩下分钟,在剩下的这段路程上,预计时间与实际时间之比为,根据路程一定,速度比等于时间的反比,实际的速度与预定的速度之比也为,因此每分钟应比原来快米.

小结:本题也可先求出相应的路程和时间,再采用公式求出相应的速度,最后计算比原来快多少,但不如采用比例法简便.

例 12】 (我爱数学夏令营”数学竞赛)一列火车出发小时后因故停车小时,然后以原速的前进,最终到达目的地晚小时.若出发小时后又前进公里因故停车小时,然后同样以原速的前进,则到达目的地仅晚小时,那么整个路程为___公里.

1【解析】 如果火车出发小时后不停车,然后以原速的前进,最终到达目的地晚小时,在一小时以后的那段路程,原计划所花的时间与实际所花的时间之比为,所以原计划要花小时,现在要花小时,若出发小时后又前进公里不停车,然后同样以原速的前进,则到达目的地仅晚小时,在一小时以后的那段路程,原计划所花的时间与实际所花的时间之比为,所以原计划要花小时,现在要花小时.所以按照原计划公里的路程火车要用小时,所以火车的原速度为千米/小时,整个路程为千米.

例 13】 王叔叔开车从北京到上海,从开始出发,车速即比原计划的速度提高了1/9,结果提前一个半小时到达;返回时,按原计划的速度行驶 280 千米后,将车速提高1/6,于是提前1 小时 40 分到达北京.北京、上海两市间的路程是多少千米?

1【解析】 从开始出发,车速即比原计划的速度提高了1/9,即车速为原计划的10/9,则所用时间为原计划的1÷10/9=9/10,即比原计划少用1/10的时间,所以一个半小时等于原计划时间的1/10,原计划时间为:1.5÷1/10=15(小时);按原计划的速度行驶 280 千米后,将车速提高1/6,即此后车速为原来的7/6,则此后所用时间为原计划的1÷7/6=6/7,即此后比原计划少用1/7的时间,所以1 小时 40 分等于按原计划的速度行驶 280 千米后余下时间的1/7,则按原计划的速度行驶 280 千米后余下的时间为:

5/3÷1/7=35/3(小时),所以,原计划的速度为:84(千米/时),北京、上海两市间的路程为:84 ×15= 1260(千米).

六年级奥数 第八讲 行程问题 二 教师版

第八讲行程问题 二 知识精讲 我们常常会应用比例的工具分析2个物体在某一段相同路线上的运动情况,我们将甲 乙的速度 时间 路程分别用来表示,大体可分为以下两种情况 1.当2个物体运行速度在所讨论的路线上保持不变时,经过同一段时间后,他们走过的路程之比就等于他们的速度之比。这里因为时间相同,即,所以由...

第八讲六年级奥数利润问题

5 某商店第一天按定价300元的 共销售40件 第二天降价8 这样销量增加了30 所获得利润比第一天多120元。这种商品的成本是多少元?6 甲,乙两人卖服装,甲获利20 乙亏本20 此时乙的资金是甲的80 两人原来共有资金11万元。乙现有资金多少万元?7 张先生以标价的95 买下一套房子,经过一段时...

小升初奥数行程问题基础行程问题六年级行程教案讲义

行程问题。一 知识要点 我们把研究路程 速度 时间以及这三者之间关系的一类问题,称为行程问题。行程问题内容丰富 变化多端,在数学竞赛中是常见的一类应用题。根据物体运动的起始位置,运动方向等因素,行程问题分为相遇问题和追及问题两种基本类型。基本关系式 1 相遇问题 速度和 相遇时间 相遇路程 一般是两...