第二十五周最大最小问题。
专题简析:人们碰到的各种优化问题、高效低耗问题,最终都表现为数学上的极值问题,即小学阶段的最大最小问题。最大最小问题设计到的知识多,灵活性强,解题时要善于综合运用所学的各种知识。
例1:a和b是小于100的两个不同的自然数,求的最大值。
根据题意,应使分子尽可能大,使分母尽可能小。所以b=1;由b=1可知,分母比分子大2,也就是说,所有的分数再添两个分数单位就等于1,可见应使所求分数的分数单位尽可能小,因此a=99
的最大值是。
答:的最大值是。
练习1:1、 设x和y是选自前100个自然数的两个不同的数,求的最大值。
2、 a和b是小于50的两个不同的自然数,且a>b,求的最小值。
3、 设x和y是选自前200个自然数的两个不同的数,且x>y,①求的最大值;②求的最小值。
例2:有甲、乙两个两位数,甲数等于乙数的。这两个两位数的差最多是多少?
甲数:乙数=: 7:3,甲数的7份,乙数的3份。由甲是两位数可知,每份的数量最大是14,甲数与乙数相差4份,所以,甲、乙两数的差是14×(7-3)=56
答:这两个两位数的差最多是56。
练习2:1、 有甲、乙两个两位数,甲数的等于乙数的。这两个两位数的差最多是多少?
2、 甲、乙两数都是三位数,如果甲数的恰好等于乙数的。这两个两位数的和最小是多少?
3、 加工某种机器零件要三道工序,专做第。
一、二、三道工序的工人每小时分别能做48个、32个、28个,要使每天三道工序完成的个数相同,至少要安排多少工人?
例3:如果两个四位数的差等于8921,就是说这两个四位数组成一个数对。问:这样的数对共有多少个?
在这些数对中,被减数最大是9999,此时减数是9999-8921=1078,被减数和剑术同时减去1后,又得到一个满足题意条件的四位数对。为了保证减数是四位数,最多可以减去78,因此,这样的数对共有78+1=79个。
答:这样的数对共有79个。
练习31、 两个四位数的差是8921。这两个四位数的和的最大值是多少?
2、 如果两个三位数的和是525,就说这两个三位数组成一个数对。那么这样的数对共有多少个?组成这样的数对的两个数的差最小是多少?最大是多少?
3、 如果两个四位数的差是3456,就说这两个数组成一个数对。那么,这样的数对共有多少个?组成这样的数对的两个数的和最大是多少?最小是多少?
例4.三个连续自然数,后面两个数的积与前面两个数的积之差是114。这三个数中最小的是多少?
因为:最大数×中间数-最小数×中间数=114,即:(最大数-最小数)×中间数=114
而三个连续自然数中,最大数-最小数=2,因此,中间数是114÷2=57,最小数是57-1=56
答:最小数是56。
练习41、 桑连续的奇数,后两个数的积与前两个数的积之差是252。三个数中最小的数是___
2、 a、b、c是从小到大排列的三个数,且a-b=b-c,前两个数的积与后两个数的积之差是280。如果b=35,那么c是___
3、 被分数,,除得的结果都是整数的最小分数是___
例5.三个数字能组成6个不同的三位数。这6个三位数的和是2886。求所有这样的6个三位数中的最小的三位数。
因为三个数字分别在百位、十位、个位各出现了2次。所以,2886÷222能得到三个数字的和。
设三个数字为a、b、c,那么6个不同的三位数的和为。
abc+acb+bac+bca+cab+cba
a+b+c)×100×2+(a+b+c)×100×2+(a+b+c)×100×2
a+b+c)×222
即a+b+c=2886÷222=13
答:所有这样的6个三位数中,最小的三位数是139。
练习51、 有三个数字能组成6个不同的三位数。这6个不同的三位数的和是3108。所有这样的6个三位数中最大的一个是多少?
2、 有三个数字能组成6个不同的三位数。这6个不同的三位数的和是2220。所有这样的6个三位数中最小的一个是多少?
3、 用a、b、c能组成6个不同的三位数。这6个三位数相加的和是2886。已知a、b、c三个数字中,最大的数字是最小数字的2倍,这6个三位数中最小的数是多少?答案:练1
练21、 甲、乙两数的比是8:3,甲数最大是96 ,差最大是60。
2、 甲、乙两数的比是3:10,甲数最小是102,和最小是442。
3、 一、二、三道工序所需的工人数的比是::=14:21:24,所以至少安排14+21+24=59个工人。练3
2、 较小的数最大是(521-1)÷2=262,100~262共有163个自然数,所以共有163对,两个数的差最大是525-100-100=325
3、 数对共有9999-3456-1000+1=5544个,两个数的和最大是9999-3456+9999=16542,两个数的和最小是1000+3456+1000=5456
练41、 最大数-最小数=4 中间数=252÷4=63 最小数=63-2=61
2、 根据题意可得(a-c)×b=280,进而可以推出a-c=280÷b=280÷35=8,所以,c=35-8÷2=31
3、 所求的分数,它的分子是6,5,10的最小公倍数,分母是7,14,21的最大公约数,所以答案是。
练51、 符合题意的三个数字之和是3108÷222=14,因此,所有这样的6个三位数中最大的一个是941(三个数字不能有0,否则就不能排出6个不同的三位数)。
2、 三个数字的和是2220÷222=10,最小的一个是127。
3、 最小的数是346。
第二十六周乘法和加法原理。
专题简析:在做一件事情时,要分几步完成,而在完成每一步时又有几种不同的方法,要知道完成这件事一共有多少种方法,就用乘法原理来解决。做一件事时有几类不同的方法,而每一类方法中又有几种可能的做法就用加法原理来解决。
例题1:由数字0,1,2,3组成三位数,问:
可组成多少个不相等的三位数?
可组成多少个没有重复数字的三位数?
在确定组成三位数的过程中,应该一位一位地去确定,所以每个问题都可以分三个步骤来完成。
要求组成不相等的三位数,所以数字可以重复使用。百位上不能取0,故有3种不同的取法:十位上有4种取法,个位上也有4种取法,由乘法原理共可组成3×4×4=48个不相等的三位数。
要求组成的三位数没有重复数字,百位上不能取0,有三种不同的取法,十位上有三种不同的取法,个位上有两种不同的取法,由乘法原理共可组成3×3×2=18个没有重复数字的三位数。
练习1:1、有数字1,2,3,4,5,6共可组成多少个没有重复数字的四位奇数?
2、在自然数中,用两位数做被减数,一位数做减数,共可组成多少个不同的减法算式?
3、由数字1,2,3,4,5,6,7,8,可组成多少个:
三位数;三位偶数;
没有重复数字的三位偶数;
百位是8的没有重复数字的三位数;
百位是8的没有重复数字的三位偶数。
例题2:有两个相同的正方体,每个正方体的六个面上分别标有数字1,2,3,4,5,6。将两个正方体放在桌面上,向上的一面数字之和为偶数的有多少种情形?
要使两个数字之和为偶数,就需要这两个数字的奇、偶性相同,即两个数字同为奇数或偶数。所以,需要分两大类来考虑:
两个正方体向上一面同为奇数的共有3×3=9(种)不同的情形;
两个正方体向上一面同为偶数的共有3×3=9(种)不同的情形;
两个正方体向上一面同为偶数的共有3×3+3×3=18(种)不同的情形。
练习2:1、在1—1000的自然数中,一共有多少个数字1?
2、在1—500的自然数中,不含数字0和1的数有多少个?
3、十把钥匙开十把锁,但不知道哪把钥匙开哪把锁,问最多试开多少次,就能把锁和钥匙配起来?
4、由数字0,1,2,3,4可以组成多少个没有重复数字的三位偶数?
例题3:书架上层有6本不同的数学书,下层有5本不同的语文书,若任意从书架上取一本数学书和一本语文书,有多少种不同的取法?
从书架上任取一本数学书和一本语文书,可分两个步骤完成,第一步先取数学书,有6种不同的方法,而这6种的每一种取出后,第二步再取语文书,又有5种不同的取法,这样共有6个5种取法,应用乘法计算6×5=30(种),有30种不同的取法。
练习3:1、商店里有5种不同的儿童上衣,4种不同的裙子,妈妈准备为女儿买上衣一件和裙子一条组成一套,共有多少种不同的选法?
2、小明家到学校共有5条路可走,从学校到少年宫共有3条路可走。小明从家出发,经过学校然后到少年宫,共有多少种不同的走法?
3、张师傅到食堂吃饭,主食有2种,副食有6种,主、副食各选一种,他有几种不同的选法?
例题4:在2,3,5,7,9这五个数字中,选出四个数字,组成被3除余2的四位数,这样的四位数有多少个?
从五个数字中选出四个数字,即五个数字中要去掉一个数字,由于原来五个数字相加的和除以3余2,所以去掉的数字只能是3或9。
去掉的数字为3时,即选2,5,7,9四个数字,能排出4×3×2×1=24(个)符合要求的数,去掉的数字为9时也能排出24个符合要求得数,因此这样的四位数一共有24+24=48(个)
练习4:1、在1,2,3,4,5这五个数字中,选出四个数字组成被3除余2的四位数,这样的四位数有多少个?
2、在1,2,3,4,5这五个数字中,选出四个数字组成能被3整除的四位数,这样的四位数有多少个?
3、在1,4,5,6,7这五个数字中,选出四个数字组成被3除余1的四位数,这样的四位数有多少个?
例题5:从学校到少年宫有4条东西的马路和3条南北的马路相通(如图),小明从学校出发到少年宫(只许向东或向南行进),最后有多少种走法?
为了方便解答,把图中各点用字母表示如图。根据小明步行规则,显然可知由a到t通过ac边上的各点和an边上的各点只有一条路线,通过e点有两条路线(即从b点、d点来各一条路线),通过h点有3条路线(即从e点来有二条路线,从g点来有一条路线),这样推断可知通过任何一个交叉点的路线总数等于通过该点左边、上方的两邻接交叉点的路线的总和,因此,可求得通过s点有4条路线,通过f点有3条路线……由此可见,由a点通过t点有10条不同的路线,所以小明从学校到少年宫最多有10种走法。
六年级 下 举一反三抽屉原理
第二十六周乘法和加法原理。专题简析 在做一件事情时,要分几步完成,而在完成每一步时又有几种不同的方法,要知道完成这件事一共有多少种方法,就用乘法原理来解决。做一件事时有几类不同的方法,而每一类方法中又有几种可能的做法就用加法原理来解决。例题1 由数字0,1,2,3组成三位数,问 可组成多少个不相等的...
小学奥数 六年级 举一反三
目录。目录 2 专题1 简便运算 4 专题2 比的应用 7 专题3 行程问题 9 专题4 工程问题 12 专题5 面积计算 15 专题6 周长 表面积和体积 19 专题7 牛吃草 问题 22 专题8 浓度应用题 25 专题9 流水行船题 27 专题10 行程问题2 30 专题11 工程问题2 32 ...
小学奥数六年级举一反三11
第十一周假设法解题 二 专题简析 已知甲是乙的几分之几,又知甲与乙各改变一定的数量后两者之间新的倍数关系,要求甲 乙两个数是多少,这样的应用题称为变倍问题。应用题中的变倍问题,有两数同增 两数同减 一增一减等各种情况。虽然其中的数量关系比较复杂,但解答时的关键仍是确定哪个量为单位 1 然后通过假设,...