九年级数学二次根式知识点总结

发布 2022-08-11 03:06:28 阅读 3445

除了课堂上的学习外,数学知识点也是学生提高数学成绩的重要途径,本文为大家提供了九年级数学二次根式知识点总结,希望对大家的学习有一定帮助。

知识点一: 二次根式的概念。

形如a(a0)的式子叫做二次根式。

注:在二次根式中,被开放数可以是数,也可以是单项式、多项式、分式等代数式,但必须注意:因为负数没有平方根,所以a0是a为二次根式的前提条件,如5,(x2+1),x-1) (x1)等是二次根式,而(-2),(x2-7)等都不是二次根式。

知识点二:取值范围。

1. 二次根式有意义的条件:由二次根式的意义可知,当a0时a有意义,是二次根式,所以要使二次根式有意义,只要使被开方数大于或等于零即可。

2. 二次根式无意义的条件:因负数没有算术平方根,所以当a﹤0时,a没有意义。

知识点三:二次根式a(a0)的非负性。

a(a0)表示a的算术平方根,也就是说,a(a0)是一个非负数,即。

0(a0)。

注:因为二次根式a表示a的算术平方根,而正数的算术平方根是正数,0的算术平方根是0,所以非负数(a0)的算术平方根是非负数,即0(a0),这个性质也就是非负数的算术平方根的性质,和绝对值、偶次方类似。这个性质在解答题目时应用较多,如若a+b=0,则a=0,b=0;若a+|b|=0,则a=0,b=0;若a+b2=0,则a=0,b=0。

知识点四:二次根式(a) 的性质。

a)2=a(a0)

文字语言叙述为:一个非负数的算术平方根的平方等于这个非负数。

注:二次根式的性质公式(a)2=a(a0)是逆用平方根的定义得出的结论。上面的公式也可以反过来应用:若a0,则。

a=(a)2,如:2=(2)2,1/2=(1/2)2.

知识点五:二次根式的性质。

a2=|a|

文字语言叙述为:一个数的平方的算术平方根等于这个数的绝对值。

注:1、化简a2时,一定要弄明白被开方数的底数a是正数还是负数,若是正数或0,则等于a本身,即a2=|a|=a (a若a是负数,则等于a的相反数-a,即a2=|a|=-a (a﹤0);

2、a2中的a的取值范围可以是任意实数,即不论a取何值,a2一定有意义;

3、化简a2时,先将它化成|a|,再根据绝对值的意义来进行化简。

知识点六:(a)2与a2的异同点。

1、不同点:(a)2与a2表示的意义是不同的,(a)2表示一个非负数a的算术平方根的平方,而a2表示一个实数a的平方的算术平方根;在(a)2中,而a2中a可以是正实数,0,负实数。但(a)2与a2都是非负数,即(a)20,a20。

因而它的运算的结果是有差别的,(a)2=a(a0) ,而a2=|a|。

2、相同点:当被开方数都是非负数,即a0时,宋以后,京师所设小学馆和武学堂中的教师称谓皆称之为“教谕”。至元明清之县学一律循之不变。

明朝入选翰林院的进士之师称“教习”。到清末,学堂兴起,各科教师仍沿用“教习”一称。其实“教谕”在明清时还有学官一意,即主管县一级的教育生员。

而相应府和州掌管教育生员者则谓“教授”和“学正”。“教授”“学正”和“教谕”的副手一律称“训导”。于民间,特别是汉代以后,对于在“校”或“学”中传授经学者也称为“经师”。

在一些特定的讲学场合,比如书院、皇室,也称教师为“院长、西席、讲席”等。(a)2=a﹤0时,(a)2无意义,而a2=|a|=-a.

死记硬背是一种传统的教学方式,在我国有悠久的历史。但随着素质教育的开展,死记硬背被作为一种僵化的、阻碍学生能力发展的教学方式,渐渐为人们所摒弃;而另一方面,老师们又为提高学生的语文素养煞费苦心。其实,只要应用得当,“死记硬背”与提高学生素质并不矛盾。

相反,它恰是提高学生语文水平的重要前提和基础。

为大家整理的九年级数学二次根式知识点总结相关内容大家一定要牢记,以便不断提高自己的数学成绩,祝大家学习愉快!

要练说,得练听。听是说的前提,听得准确,才有条件正确模仿,才能不断地掌握高一级水平的语言。我在教学中,注意听说结合,训练幼儿听的能力,课堂上,我特别重视教师的语言,我对幼儿说话,注意声音清楚,高低起伏,抑扬有致,富有吸引力,这样能引起幼儿的注意。

当我发现有的幼儿不专心听别人发言时,就随时表扬那些静听的幼儿,或是让他重复别人说过的内容,抓住教育时机,要求他们专心听,用心记。平时我还通过各种趣味活动,培养幼儿边听边记,边听边想,边听边说的能力,如听词对词,听词句说意思,听句子辩正误,听故事讲述故事,听谜语猜谜底,听智力故事,动脑筋,出主意,听儿歌上句,接儿歌下句等,这样幼儿学得生动活泼,轻松愉快,既训练了听的能力,强化了记忆,又发展了思维,为说打下了基础。

九年级数学二次根式知识点总结

专题总结及应用。一 知识性专题。专题1 二次根式的最值问题。专题解读 涉及二次根式的最值问题,应根据题目的具体情况来决定应采用的方法,不能一概而论,但一般情况下利用二次根式的非负性来求解。例1 当x取何值时,的值最小?最小值是多少?分析由二次根式的非负性可知的最小值为0,因为3是常数,所以的最小值为...

九年级数学二次根式知识点总结

除了课堂上的学习外,数学知识点也是学生提高数学成绩的重要途径,本文为大家提供了九年级数学二次根式知识点总结,希望对大家的学习有一定帮助。知识点一 二次根式的概念。形如a a0 的式子叫做二次根式。注 在二次根式中,被开放数可以是数,也可以是单项式 多项式 分式等代数式,但必须注意 因为负数没有平方根...

九年级数学二次根式知识点总结

除了课堂上的学习外,数学知识点也是学生提高数学成绩的重要途径,本文为大家提供了九年级数学二次根式知识点总结,希望对大家的学习有一定帮助。知识点一 二次根式的概念。形如a a0 的式子叫做二次根式。注 在二次根式中,被开放数可以是数,也可以是单项式 多项式 分式等代数式,但必须注意 因为负数没有平方根...