九年级数学图形变换专项训练。
2009朝阳】
七、(本题12分)
25.如图,在梯形中,,,另有一直角三角形,,点与点重合,点与点重合,点在上,让的边在上,点在上,以每秒1个单位的速度沿着方向向右运动,如图,点与点重合时停止运动,设运动时间为秒.
1)在上述运动过程中,请分别写出当四边形为正方形和四边形为平行四边形时对应时刻的值或范围;
2)以点为原点,以所在直线为轴,过点垂直于的直线为轴,建立如图所示的坐标系.求过三点的抛物线的解析式;
3)**:延长交(2)中的抛物线于点,是否存在这样的时刻使得的面积与梯形的面积相等?若存在,求出的值;若不存在,请说明理由.
2009本溪】
七、解答题(本题12分)
25.在中,,点是直线上一点(不与重合),以为一边在的右侧作,使,连接.
1)如图1,当点**段上,如果,则度;
2)设,.如图2,当点**段上移动,则之间有怎样的数量关系?请说明理由;
当点在直线上移动,则之间有怎样的数量关系?请直接写出你的结论.
2009丹东】七、(本题12分)
25.有两张完全重合的矩形纸片,小亮同学将其中一张绕点a顺时针旋转90°后得到矩形amef(如图12),连结bd、mf,若此时他测得bd=8cm,∠adb=30°.
1)试**线段bd与线段mf的关系,并简要说明理由;
2)小红同学用剪刀将△bcd与△mef剪去,与小亮同学继续**.他们将△abd绕点a顺时针旋转得△ab1d1,ad1交fm于点k(如图13),设旋转角为(0°<<90°),当△afk为等腰三角形时,请直接写出旋转角的度数;
3)若将△afm沿ab方向平移得到△a2f2m2(如图14),f2m2与ad交于点p,a2m2与bd交于点n,当np∥ab时,求平移的距离是多少?
2009锦州】
25.如图13,直角梯形abcd和正方形efgc的边bc、cg在同一条直线上,ad∥bc,ab⊥bc于点b,ad=4,ab=6,bc=8,直角梯形abcd的面积与正方形efgc的面积相等,将直角梯形abcd沿bg向右平行移动,当点c与点g重合时停止移动。设梯形与正方形重叠部分的面积为s.
(1)求正方形的边长;
(2)设直角梯形abcd的顶点c向右移动的距离为x,求s与x的函数关系式;
(3)当直角梯形abcd向右移动时,它与正方形efgc的重叠部分面积s能否等于直角梯形abcd面积的一半?若能,请求出此时运动的距离x的值;若不能,请说明理由。
2009辽阳】
七、(本题12分)
25.如图12,在直角梯形abcd中,cd//ab,cbab,bc=6cm,dc=6cm,ad=10cm
1)求ab的长.
2)操作:如图13,过点d作deab于e.将直角梯形abcd 沿de剪开,得到四边。
形debc和△ade.四边形debc不动,将△ade沿射线ad的方向,以每秒1cm
的速度平移,当点a平移到点d时,停止平移.
**:设在平移过程中,△ade与四边形debc重叠部分的面积为,平移时。
间为秒,求与的函数关系式,并直接写出自变量的取值范围.
2009营口】
七、解答题(12分)
25.如图1,p是线段ab上的一点,在ab的同侧作△apc和△bpd,使pc=pa,pd=pb,∠apc=∠bpd,连接cd,点e、f、g、h分别是ac、ab、bd、cd的中点,顺次连接e、f、g、h.
1)猜想四边形efgh的形状,直接回答,不必说明理由;
2)当点p**段ab的上方时,如图2,在△apb的外部作△apc和△bpd,其他条件不变,(1)中的结论还成立吗?说明理由;
3)如果(2)中,∠apc=∠bpd=90,其他条件不变,先补全图3,再判断四边形efgh的形状,并说明理由.
2009沈阳】
七、(本题12分)
25.将两个全等的直角三角形abc和dbe按图①方式摆放,其中∠acb=∠deb=90,∠a=∠d=30,点e落在ab上,de所在直线交ac所在直线于点f.
1)求证:af+ef=de;
2)若将图①中的△dbe绕点b按顺时针方向旋转角,且0<<60,其他条件不变,请在图②中画出变换后的图形,并直接写出(1)中的结论是否仍然成立;
3)若将图①中的△dbe绕点b按顺时针方向旋转角,且60<<180,其他条件不变,如图③.你认为(1)中的结论还成立吗?若成立,写出证明过程;若不成立,请写出此时af、ef与de之间的关系,并说明理由.
2009铁岭】
七、解答题(本题12分)
25.是等边三角形,点是射线上的一个动点(点不与点重合),是以为边的等边三角形,过点作的平行线,分别交射线于点,连接.
1)如图(a)所示,当点**段上时.
①求证:;**四边形是怎样特殊的四边形?并说明理由;
2)如图(b)所示,当点在的延长线上时,直接写出(1)中的两个结论是否成立?
3)在(2)的情况下,当点运动到什么位置时,四边形是菱形?并说明理由.
2009抚顺】
七、解答题(本题12分)
25.已知:如图所示,直线与的平分线交于点,过点作一条直线与两条直线分别相交于点.
1)如图1所示,当直线与直线垂直时,猜想线段之间的数量关系,请直接写出结论,不用证明;
2)如图2所示,当直线与直线不垂直且交点都在的同侧时,(1)中的结论是否成立?如果成立,请证明:如果不成立,请说明理由;
3)当直线与直线不垂直且交点在的异侧时,(1)中的结论是否仍然成立?如果成立,请说明理由;如果不成立,那么线段之间还存在某种数量关系吗?如果存在,请直接写出它们之间的数量关系.
2010抚顺】七、解答题(本题12分)
25.如图所示,(1)正方形abcd及等腰rt△aef有公共顶点a,∠eaf=90, 连接be、df.将rt△aef绕点a旋转,在旋转过程中,be、df具有怎样的数量关系和位置关系?
结合图(1)给予证明;
2)将(1)中的正方形abcd变为矩形abcd,等腰rt△aef变为rt△aef,且ad=kab,af=kae,其他条件不变。(1)中的结论是否发生变化?结合图(2)说明理由;
3)将(2)中的矩形abcd变为平行四边形abcd,将rt△aef变为△aef,且∠bad=∠eaf=,其他条件不变。(2)中的结论是否发生变化?结合图(3),如果不变,直接写出结论;如果变化,直接用k表示出线段be、df的数量关系,用表示出直线be、df形成的锐角。
第25题图)
2010本溪】
七、解答题(本题12分)
25.如图所示,在rt△abc中,∠bac=90°,∠b=30°,ac=1,线段ad是bc边上的中线,将△adc沿直线bc平移,使点d与点c重合,得到△fce,显然四边形adef是等腰梯形。 再将△fce绕点c顺时针旋转,设旋转角为(0°<<180°).
(1)当∠ace=150°时,求旋转角的度数。
2)在旋转过程中四边形adef是否依然是等腰梯形?
若是,请证明; 若不是,请说明理由。
第25(1)图。
备用图(1)
备用图(2)
2010铁岭】
七、解答题(本题12分)
25.如图,一个直角三角形纸片的顶点a在∠mon的边om上移动,移动过程中始终保持ab⊥on于点b,ac⊥om于点a.∠mon的角平分线op分别交ab、ac于d、e两点。
1)点a在移动的过程中,线段ad和ae有怎样的数量关系,并说明理由。
2)点a在移动的过程中,若射线on上始终存在一点f与点a关于op所在的直线对称,判断并说明以a、d、f、e为顶点的四边形是怎样特殊的四边形?
3)若∠mon=45°,猜想线段ac、ad、oc之间有怎样的数量关系,并证明你的猜想。
2010沈阳】七、(本题12分)
24. 如图1,在△abc中,点p为bc边中点,直线a绕顶点a旋转,若b、p在直线a的异侧,bm直线a于点m,cn直线a于点n,连接pm、pn;
(1) 延长mp交cn于点e(如图2)。 求证:△bpm△cpe; 求证:pm = pn;
(2) 若直线a绕点a旋转到图3的位置时,点b、p在直线a的同侧,其它条件不变。此时。
pm=pn还成立吗?若成立,请给予证明;若不成立,请说明理由;
(3) 若直线a绕点a旋转到与bc边平行的位置时,其它条件不变。请直接判断四边形mbcn
的形状及此时pm=pn还成立吗?不必说明理由。
2010丹东】
七、(12分)
25.如图, 已知等边三角形abc中,点d,e,f分别为边ab,ac,bc的中点,m为直线bc上一动点,△dmn为等边三角形(点m的位置改变时, △dmn也随之整体移动) .
(1)如图①,当点m在点b左侧时,请你判断en与mf有怎样的数量关系?点f是否在直线ne上?都请直接写出结论,不必证明或说明理由;
(2)如图②,当点m在bc上时,其它条件不变,(1)的结论中en与mf的数量关系是否仍然成立?若成立,请利用图②证明;若不成立,请说明理由;
3)若点m在点c右侧时,请你在图③中画出相应的图形,并判断(1)的结论中en与mf的数量关系是否仍然成立?若成立?请直接写出结论,不必证明或说明理由.
九年级第二轮复习专题训练
九年级数学压轴题专项训练。2009朝阳 八 本题14分 26 如图,点,的坐标分别为 2,0 和 0,将绕点按逆时针方向旋转后得,点的对应点是点,点的对应点是点 1 写出,两点的坐标,并求出直线的解析式 2 将沿着垂直于轴的线段折叠,点在轴上,点在上,点不与,重合 如图,使点落在轴上,点的对应点为点...
九年级第二轮复习专题训练
九年级数学压轴题专项训练。2009朝阳 八 本题14分 26 如图,点,的坐标分别为 2,0 和 0,将绕点按逆时针方向旋转后得,点的对应点是点,点的对应点是点 1 写出,两点的坐标,并求出直线的解析式 2 将沿着垂直于轴的线段折叠,点在轴上,点在上,点不与,重合 如图,使点落在轴上,点的对应点为点...
九年级第二轮复习专题训练圆
九年级数学圆的专项训练。2009大连 21 如图11,在 o中,ab是直径,ad是弦,ade 60 c 30 判断直线cd是否是 o的切线,并说明理由 若cd 求bc的长 2009朝阳 20 如图,是的外接圆,点在上,点是垂足,连接 求证 是的切线 2009本溪 22 如图所示,ab是直径,弦于点,...