函数的单调性的教学反思。
首先谈本节内容在教材中的地位与作用:《函数的单调性》系人教版高中数学必修一的内容,该内容包括函数的单调性的定义与判断及其证明。在初中学习函数时,借助图像的直观性研究了一些函数的增减性.这节内容是初中有关内容的深化、延伸和提高.这节通过对具体函数图像的归纳和抽象,概括出函数在某个区间上是增函数或减函数的准确含义,明确指出函数的增减性是相对于某个区间来说的.教材中判断函数的增减性,既有从图像上进行观察的直观方法,又有根据其定义进行逻辑推理的严格方法,最后将两种方法统一起来,形成根据观察图像得出猜想结论,进而用推理证明猜想的体系.函数的单调性是函数众多性质中的重要性质之一,函数的单调性一节中的知识是前一节内容函数的概念和图像知识的延续,它和后面的函数奇偶性,合称为函数的简单性质,是今后研究指数函数、对数函数、幂函数及其他函数单调性的理论基础;在解决函数值域、定义域、不等式、比较两数大小等具体问题中均需用到函数的单调性;同时在这一节中利用函数图象来研究函数性质的数形结合思想将贯穿于我们整个高中数学教学。
其次学情、教法分析:按现行新教材结构体系,学生只学过一次函数、二次函数、反比例函数,所以对函数的单调性研究也只能限于这几种函数。依据现有认知结构,学生只能根据函数的图象观察出“随着自变量的增大,函数值增大”的变化趋势,而不能用符号语言进行严密的代数证明,只能依据形的直观性进行感性判断而不能进行“思辩”的理性认识。
所以在教学中要找准学生学习思维的“最近发展区”进行有意义的建构教学。在教学过程中,要注意学生第一次接触代数形式的证明,为使学生能迅速掌握代数证明的格式,要注意让学生在内容上紧扣定义贯穿整个学习过程,在形式上要从有意识的模仿逐渐过渡到独立的证明。
本课是让学生通过观察函数图象的基础上,从特殊到一般的方法归纳出函数单调性的定义及有关概念,通过例题归纳出证明函数单调性的方法、步骤及注意点。这篇教学设计完整,思路清晰.案例首先通过实例阐述了函数单调性产生的背景,归纳、抽象概括出了增函数、减函数的定义,充分体现了数学教学的本质是数学思维过程的教学,符合新课程标准的精神.例题与练习由浅入深,完整,全面.练习的设计有新意,有深度,为学生数学思维能力、创造能力的培养提供了平台.它的特点体现在如下几个方面:
1.强调对基本概念和基本思想的理解和掌握。
由于数学高度抽象的特点,注重体现基本概念的来龙去脉.在数学中要引导学生经历从具体实例抽象出数学概念的过程,在初步运用中逐步理解概念的本质.
2.注重联系,提高对数学整体的认识。
数学的发展既有内在的动力,也有外在的动力.在高中数学的教学中,要注重数学的不同分支和不同内容之间的联系,数学与日常生活的联系,数学与其他学科的联系.
3、注重数学知识与实际的联系,发展学生的应用意识和能力。
在数学教学中,应注重发展学生的应用意识;通过丰富的实例引入数学知识,引导学生应用数学知识解决实际问题,经历探索、解决问题的过程,体会数学的应用价值,帮助学生认识到:数学与我有关,与实际生活有关;数学是有用的,我要用数学,我能用数学.
但是,在真正教学中也出现了一些问题:
1.时间的控制上难以把握;2.学生的单调性的证明过程写的不够完美。
教学反思 3
初中数学教学反思。教然后而知困。教师在教育教学过程中时常反思,会不断地发现困惑,激发教师终身学习。以下是本人在教育教学过程中的体会与反思。长期以来,对教师教学的要求强调领会教学大纲 驾驭教材较多,因此教师钻研教材多,研究教法多,而研究学生思维活动较少,因而选择适合学生认知过程的教法也少。学生对知识的...
教学反思 3课后反思
正方体的展开图 的教学反思。本节课我的设计思路是,教师是学习活动的引导者和组织者,学生是课堂的主人,充分体现以人为本的教学理念,尊重学生的个体差异,通过学生亲身经历动手实践操作过程,信息技术的辅助教学,激发 鼓励学生自主探索与合作交流,发展学生的空间观念,丰富想象力,引发学生的发散思维和创新意识,不...
作业3 教学实践反思
我作为一名在农村任教的小学老师,每位老师上课都各有千秋,独树一指,上数学课,其实,语言是思维的外壳,从表面看,学生的课堂发言只是一种说话的训练,实际上它是倾听 思考 表达等多方面的综合反映。它可以让学生集中注意力,锻炼学生的语言表达能力和思维敏捷性,还可以培养学生的创新精神,提高他们听课的效率,加深...