2023年数学高考复习大纲。
根据教育部考试中心2023年数学科《考试大纲》提出的考试能力要求、考试内容、考试形式与试卷结构及专家分析**提出的新观点构成了2023年数学高考复习大纲,即复习的内容、 重点、策略等。
一、考试内容的知识要求、能力要求和个性品质要求。
1.知识要求。
知识是指《全日制高级中学数学教学大纲》所规定的教学内容中的数学概念、性质、法则、公式、公理、定理以及其中的数学思想和方法。
对知识的要求由低到高分为三个层次,依次是了解、理解和掌握、灵活和综合运用,且高一级的层次要求包括低一级的层次要求。
(1)了解:要求对所列知识的含义有初步的、感性的认识,知道这一知识内容是什么,并能在有关的问题中直接应用。
(2)理解和掌握:要求对所列知识内容有较深刻的理性认识,能够解释、举例或变形、推断,并能利用知识解决有关问题。
(3)灵活和综合运用:要求系统地掌握知识的内在联系,能运用所列知识分析和解决较为复杂的或综合性的问题。
【注意】在命题范围内,常用的数学技能和方法,如配方法、换元法、待定系数法、数学归纳法和数形结合法等,以及常用的逻辑推理方法,如分析法、综合法、归纳法、演绎法和反证法等,都是考查的主要内容。考查中,重在通性通法的正确与灵活的运用。
对于处理问题的重要的数学思想方法,如函数与方程、变换与转化、分类与归纳、数形的结合与分离、定常与变化的对立与统一等思想观点和方法,也将通过具体问题,测试考生掌握的程度。
2.能力要求。
能力是指思维能力、运算能力、空间想像能力以及实践能力和创新意识。
(1)思维能力:会对问题或资料进行观察、比较、分析、综合、抽象与概括;会用演绎、归纳和类比进行推理;能合乎逻辑地、准确地进行表述。
【注意】对思维能力的考查要求,与试题的解答过程结合起来就是:能正确领会题意,明确解题的目标与方向;会采用适当的步骤,合乎逻辑地进行推理和演算,实现解题目标;并加以正确表述。
(2)运算能力:会根据法则、公式进行正确运算、变形和处理数据;能根据问题的条件,寻找与设计合理、简捷的运算途径;能根据要求对数据进行估计和近似计算。
【注意】在数学科考试中,数值计算、字符运算和各种式子的变换运算,都是重要的考查内容。应懂得恰当地应用估算、图算、近似计算和精确计算进行解题。
(3)空间想像能力:能根据条件作出正确的图形,根据图形想像出直观形象;能正确地分析出图形中基本元素及其相互关系;能对图形进行分解、组合与变换;会运用图形与图表等手段形象地揭示问题的本质。
【注意】空间想像能力强调的是对图形的认识、理解和应用,既会用图形表现空间形体,又会由图形想像出直观的形象;既会观察、分析各种几何要素(点、线、面、体)的相互位置关系,又能对图形进行变换分解和组合。为了增强和发展空间想像能力,必须强化空间观念,培养直觉思维的习惯,把抽象思维与形象思维结合起来。
(4)实践能力:能综合应用所学数学知识、思想和方法解决问题,包括解决在相关学科、生产、生活中的数学问题;能阅读、理解对问题进行陈述的材料;能够对所提供的信息资料进行归纳、整理和分类,将实际问题抽象为数学问题,建立数学模型;应用相关的数学方法解决问题并加以验证,并能用数学语言正确地表述、说明。
(5)创新意识:对新颖的信息、情境和设问,选择有效的方法和手段收集信息,综合与灵活地应用所学的数学知识、思想和方法,进行独立的思考、探索和研究,提出解决问题的思路,创造性地解决问题。
3.个性品质要求。
个性品质是指考生个体的情感、态度和价值观。 具有一定的数学视野,认识数学的科学价值和人文价值,崇尚数学的理性精神,形成审慎思维的习惯,体会数学的美学意义。要求考生克服紧张情绪,以平和的心态参加考试,合理支配考试时间,以实事求是的科学态度解答试题,树立战胜困难的信心,体现锲而不舍的精神。
二、命题基本原则
数学学科的系统性和严密性决定了数学知识之间深刻的内在联系,包括各部分知识在各自的发展过程中的纵向联系和各部分知识之间的横向联系。要善于从本质上抓住这些联系,进而通过分类、梳理、综合,构建数学试题的结构框架。对数学基础知识的考查,要求全面又突出重点,对于支撑学科知识体系的重点知识,考查时要保持较高的比例,构成数学试题的主体。
注重学科的内在联系和知识的综合性,不刻意追求知识的覆盖面。从学科的整体高度和思维价值的高度考虑问题,在知识网络交汇点设计试题,使考查达到必要的深度。
数学思想和方法是数学知识在更高层次上的抽象和概括,蕴涵在数学知识发生、发展和应用的过程中,能够迁移并广泛应用于相关学科和社会生活中。因此,对于数学思想和方法的考查必然要与数学知识的考查结合进行,通过数学知识的考查,反映考生对数学思想和方法理解和掌握的程度。考查时要从学科整体意义和思想价值立意,要有明确的目的,加强针对性,注意通性通法,淡化特殊技巧,有效地检测考生对中学数学知识中所蕴涵的数学思想和方法的掌握程度。
数学是一门思维的科学,是培养理性思维的重要载体,通过空间想像、直觉猜想、归纳抽象、符号表达、运算推理、演绎证明和模式构建等诸方面,对客观事物中的数量关系和数学模式进行思考和判断,形成和发展理性思维,构成数学能力的主体。对能力的考查,强调"以能力立意",就是以数学知识为载体,从问题入手,把握学科的整体意义,用统一的数学观点组织材料。对知识的考查侧重于理解和应用,尤其是综合和灵活的应用,以此来检测考生将知识迁移到不同的情境中去的能力,从而检测出考生个体理性思维的广度和深度,以及进一步学习的潜能。
对能力的考查,以思维能力为核心,全面考查各种能力,强调综合性、应用性,切合考生实际。运算能力是思维能力和运算技能的结合,它不仅包括数的运算,还包括式的运算,对考生运算能力的考查主要是算理和逻辑推理的考查,以含字母的式的运算为主。空间想像能力是对空间形式的观察、分析、抽象的能力,考查时注意与推理相结合。
实践能力在考试中表现为解答应用问题,考查的重点是客观事物的数学化,这个过程主要是依据现实的生活背景,提炼相关的数量关系,构造数学模型,将现实问题转化为数学问题,并加以解决。命题时要坚持"贴近生活,背景公平,控制难度"的原则,要把握好提出问题所涉及的数学知识和方法的深度和广度,要切合我国中学数学教学的实际,让数学应用问题的难度更加符合考生的水平,引导考生自觉地置身于现实社会的大环境中,关心自己身边的数学问题,促使学生在学习和实践中形成和发展数学应用的意识。
创新意识和创造能力是理性思维的高层次表现。在数学学习和研究过程中,知识的迁移、组合、融汇的程度越高,展示能力的区域就越宽泛,显现出的创造意识也就越强。命题时要注意试题的多样性,设计考查数学主体内容,体现数学素质的题目,反映数、形运动变化的题目,研究型、探索型或开放型的题目。
让考生独立思考,自主探索,发挥主观能动性,研究问题的本质,寻求合适的解题工具,梳理解题程序,为考生展现其创新意识发挥创造能力创设广阔的空间。
数学科的命题,在考查基础知识的基础上,注重对数学思想和方法的考查,注重对数学能力的考查,注重展现数学的科学价值和人文价值。同时兼顾试题的基础性、综合性和现实性,重视试题的层次性,合理调控综合程度,坚持多角度、多层次的考查,努力实现全面考查综合数学素养的要求。
三、考试内容。
1.平面向量。
考试内容:向量。向量的加法与减法。实数与向量的积。平面向量的坐标表示。线段的定比分点。平面向量的数量积。平面两点间的距离。平移。
考试要求:(1)理解向量的概念,掌握向量的几何表示,了解共线向量的概念。
(2)掌握向量的加法与减法。
(3)掌握实数与向量的积,理解两个向量共线的充要条件。
(4)了解平面向量的基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算。
(5)掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件。
(6)掌握平面两点间的距离公式,以及线段的定比分点和中点坐标公式,并且能熟练运用。掌握平移公式。
【注意】向量是数学的重要概念之一,它给平面解析几何奠定了必要的基础,同时也为物理学提供了工具,这部分内容与实际结合比较密切。在高考中的考查主要集中在两个方面:①向量的基本概念和基本运算;②向量作为工具的应用。
2.集合、简易逻辑。
考试内容:集合。子集。补集。交集。并集。逻辑联结词。四种命题。充要条件。
考试要求:(1)理解集合、子集、补集、交集、并集的概念。了解空集和全集的意义。了解属于、包含、相等关系的意义。掌握有关的术语和符号,并会用它们正确表示一些简单的集合。
(2)理解逻辑联结词"或"、"且"、"非"的含义。理解四种命题及其相互关系。掌握充要条件的意义。
【注意】近年的高考题中,集合的考查通常以两种方式出现:①考查集合的概念、集合的关系、集合的运算;②在考查其他部分内容时涉及到集合的知识。很少有正面考查逻辑的内容。
逻辑与充要条件的知识往往是和其他知识结合起来考查。
3.函数。考试内容:映射。函数。函数的单调性、奇偶性。.
反函数。互为反函数的函数图像间的关系。
指数概念的扩充。有理指数幂的运算性质。指数函数。
对数。对数的运算性质。对数函数。
函数的应用举例。
考试要求:(1)了解映射的概念,理解函数的概念。
(2)了解函数的单调性、奇偶性的概念,掌握判断一些简单函数的单调性、奇偶性的方法。
(3)了解反函数的概念及互为反函数的函数图像间的关系,会求一些简单函数的反函数。
(4)理解分数指数幂的概念,掌握有理指数幂的运算性质。掌握指数函数的概念、图像和性质。
5)理解对数的概念,掌握对数的运算性质。掌握对数函数的概念、图像和性质。
6)能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题。
【注意】函数是高中数学的核心内容,也是学习高等数学的基础。在历年高考试卷中,占分多,比重大。考生在复习函数部分时:
①一要加深对函数概念、性质的理解;②熟练掌握与函数有关的各种解题方法和技巧;③紧密联系与本部分有关的知识,掌握综合题的解题通法和技巧。
4.不等式。
考试内容:不等式。不等式的基本性质。不等式的证明。不等式的解法。含绝对值不等式。
考试要求:(1)理解不等式的性质及其证明。
(2)掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用。
大纲2023年数学高考复习
2005年数学高考复习大纲。根据教育部考试中心2005年数学科 考试大纲 提出的考试能力要求 考试内容 考试形式与试卷结构及专家分析 提出的新观点构成了2005年数学高考复习大纲,即复习的内容 重点 策略等。一 考试内容的知识要求 能力要求和个性品质要求。1 知识要求。知识是指 全日制高级中学数学教...
2023年高考地理复习必看
2018年高考地理答题技巧。1.原因 自然 人为 2.条件 有利 不利 3 影响 正面 负面 4.区位 自然 社会 经济 5.效益 经济 社会 环境 6.措施 生物 工程 技术 7.重大工程意义 两端 中间 或 政治 经济 民族 国防 8.要素 总量 结构 9评级 积极 消极 第一篇 高考地理综合题...
2023年数学高考
和全面的分析问题能力。试题均具有较高的区分度。说明 以上搜集的命题人员中,还缺若干位 2009江苏高考数学命题人员名单。组长 陈永高 南京师范大学 研究方向 数论 竞赛数学。副组长 张兴永 中国矿业大学 研究方向 偏微分方程 数学建模。组员 朱江 徐州师范大学 研究方向 非线性泛函分析 不动点定理。...